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Deciphering the electrical activity of individual neurons from multi-unit noisy recordings is

critical for understanding complex neural systems. A widely used spike sorting algorithm

is being evaluated for single-electrode nerve trunk recordings. The algorithm is based on

principal component analysis (PCA) for spike feature extraction. In the neuroscience litera-

ture it is generally assumed that the use of the first two or most commonly three principal

components is sufficient. We estimate the optimum PCA-based feature space by evaluating

the algorithm’s performance on simulated series of action potentials. A number of modi-

fications are made to the open source nev2lkit software to enable systematic investigation

of the parameter space. We introduce a new metric to define clustering error considering

over-clustering more favorable than under-clustering as proposed by experimentalists for

our data. Both the program patch and the metric are available online. Correlated and white
Single-electrode extracellular

recordings

Gaussian noise processes are superimposed to account for biological and artificial jitter

in the recordings. We report that the employment of more than three principal compo-

nents is in general beneficial for all noise cases considered. Finally, we apply our results to

experimental data and verify that the sorting process with four principal components is in

agreement with a panel of electrophysiology experts.

ence and his objective judgment. Consequently, a significant
1. Introduction

Extracellular recordings of spontaneous nerve activity using
either hook or suction electrodes is a common practice for a
number of electrophysiological experiments providing valu-
able information concerning peripheral and central nervous
system physiology of vertebrates and invertebrates [1–6].
Extracellular electrodes record voltage potentials represent-
ing the activity of an unknown number of activated axons
which may serve different functions. It is generally assumed
that neurons encode information into series of action poten-

tials (AP), their spike trains, so there is a special interest
in reconstructing the waveform of individual neurons from
the recorded trace. The procedure of proper assignment of

∗ Corresponding author. Tel.: +30 2310 998261; fax: +30 2310 998269.
E-mail addresses: dadam@bio.auth.gr (D.A. Adamos), kosmidef@bio

0169-2607/$ – see front matter © 2008 Elsevier Ireland Ltd. All rights res
doi:10.1016/j.cmpb.2008.04.011
© 2008 Elsevier Ireland Ltd. All rights reserved.

spikes to neurons, in order to draw inferences from neu-
ral recordings, is referred to as neural spike sorting. Spike
sorting from nerve activity is based on the assumption that
the APs of a neuron have the same size and shape as they
depend mainly on the axon’s diameter and its distance from
the electrode. The experimentalist has to identify the num-
ber of neurons from the recorded trace and classify each
action potential into separate spike trains in a time consum-
ing procedure that grows with the number of axons. The
quality of spike sorting depends on the researcher’s experi-
.auth.gr (E.K. Kosmidis), theophil@bio.auth.gr (G. Theophilidis).

variability in human spike sorting performance has been
noted [7]. Over the last decade, a considerable amount of
research has been devoted to computer aided spike sorting

erved.
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hich is today an indispensable tool in neuroscience research
7–9,11–21].

A generic algorithm for spike sorting, implemented in pop-
lar commercial and open source titles, is as follows: spikes
re extracted initially from the continuously extracellular
ecorded signal and a spike vector is created. The classifi-
ation of detected spikes into multiple groups of neurons is
ased on spike shape characterization. In order to reduce the
imensionality of the data, features of the shape are selected
o be used to represent the most prominent dynamics of spike
aveforms. In the final step, clustering techniques are used to

chieve the best cluster separation decision making.
Principal component analysis (PCA) is a powerful method

mployed to automatically select features and use them to
reate feature vectors [22]. PCA seeks an ordered set of orthog-
nal basis vectors, the principal components, which capture
he directions in the data of largest variation [18]. A smaller
ubspace created by some of the initial principal vectors is
hen used to make an approximate projection of the data. In
his projection, clusters of different units in the data, corre-
ponding to separate neurons, are revealed. It has been argued
hat the use of the first two or more commonly three princi-
al components is sufficient to accurately describe the spike

8,10,14–19,23–30]. A very popular choice for the final step is
he expectation–maximization (EM) clustering algorithm [31].
he EM algorithm is an ideal candidate for solving parame-

er estimation problems. It computes probabilities of cluster
emberships based on one or more probability distributions
hile the goal is to maximize the overall probability or likeli-
ood of the final data.

Typical problems in spike sorting are the presence of noise
nd spike overlaps. Biological noise and noise from the record-
ng devices may introduce problems in spike detection and in
pike classification. With noise, similar APs belonging to dif-
erent neurons may appear the same or APs belonging to the
ame neuron may appear different. Spike overlaps occur when
wo or more neurons fire simultaneously or almost simulta-
eously and produce APs of significant size. Depending on
hen the peaks and dips of the APs occur the size and shape
f the resulting trace will vary. Another inherent weakness

n spike sorting is the a priori ignorance of the number of
ctive neurons present in the recorded trace. The a posteri-
ri supervision of the classification results by the researchers
nd their decision making on whether more or less clusters
hould be considered introduce the human error factor in the
rocess.

In this paper we empirically estimate the size of PCA-
ased feature space in a typical semi-automatic spike sorting
pproach. Statistical approaches to estimate this subspace
imension in a blind fashion also exist in the literature (for
comparative study see in [32]). We apply the PCA–EM combi-
ation to simulated spike trains representing single electrode
ecords from the neural cord of the beetle Tenebrio molitor.
hese neurons display spontaneous activity and multiple Sin-
le Fiber Action Potentials (SFAP) can be seen on the trace. We
valuate the optimum volume of principal components that

articipate in the spike sorting approach under different types
nd levels of background noise. This is possible based on our
priori knowledge of the number of simulated neurons, the

xact occurrence timings and overlaps of the APs generated by
i o m e d i c i n e 9 1 ( 2 0 0 8 ) 232–244 233

each one of them. Finally, we apply the method to our exper-
imental data and compare the results with those obtained by
a group of neurophysiology experts.

The remainder of this paper is organized as follows: in Sec-
tion 2, we give the background mathematics on the proposed
simulation method and the part of the spike sorting method-
ology that we exploited during the evaluation procedure; in
Section 3, we describe the detailed implementation of our
work; and in Section 4, we present the results derived from
the evaluation of the spike sorting method on the simulated
and experimental data.

2. Background mathematics

2.1. Single fiber action potential model

The model for SFAP is a damped sinusoid as suggested in [33]:

f (t) = A sin
(

t

�1

)
e−t/�2

(1)

where A, �1 and �2 are parameters that determine the ampli-
tude, rising phase rate and the total duration of each SFAP,
respectively. Spike, AP and SFAP will be used interchangeably
throughout this text. A small amount of bound-limited, uni-
formly distributed jitter was added to all three parameters to
account for naturally occurring variability in spike shape of
the same axon.

A dead time Poisson process (DTPP) with rate �, defined for
each unit separately, and absolute refractory period � = 2.5 ms
has been used to generate spike interval times for each unit
[34–36].

2.2. Principal component analysis

In PCA a spike vector is constructed in an m-dimensional
space, where m is the number of measurement types. Form-
ing an n × m matrix of values, each of the n rows represents
an object that can be regarded as an m-dimensional vector, a
row vector in Rm. In Rm, PCA searches for the best-fitting linear
combined set of orthogonal axes to replace the initial set of m
axes in this space. The idea behind this step is to find a set
of m′ < m principal axes allowing the objects to be adequately
characterized on a smaller (m′-dimensional) space, while the
m–m′ dimensions may be ignored as describing noise. In PCA,
the projections of points on the axis sought for, need to be as
elongated as possible, i.e. the variance of the projections needs
to be as great as possible. The eigenvectors associated with the
m′ largest eigenvalues yield the best-fitting m′-dimensional
subspace of Rm. For an excellent review on PCA and its appli-
cations see in [37].

3. Methodology

3.1. Spike train generation
In order to evaluate the algorithm’s performance in more
realistic situations we have modeled series of randomly dis-
tributed action potentials with different characteristics (A, �1
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Fig. 1 – Overlap of the seven single fiber actions potentials
used in the simulations.

and �2) rather than simply generating the waveforms and
aligning them to also test the spike extraction step. For each
unit, Eq. (1) is altered to

f (t) = A sin
(

t − t0

�1

)
e(t0−t)/�2

(2)

where t0 is the action potential triggering time defined by the
DTPP for each fiber independently.

In the simulations, N = 7 different units have been
described. The resulting SFAPs are superimposed in Fig. 1 and
their parameters are listed in Table 1.

The traces of all units were added with unitary weights
to produce the “recorded trace”. White Gaussian and corre-
lated stochastic processes have been added to approximate
background activity. White Gaussian noise is widely used in
theoretical studies concerning neuronal function [38]. Myeli-
nated axons are considered electrically isolated and have
no synaptic interactions within a nerve; thus, their activity
is largely independent. In theory, background noise in hook
or suction electrode recordings from nerve trunks may be
approximated by a Gaussian process. In practice however,
ephaptic interactions and the use of filters and digitization

according to experimental needs introduce various levels of
correlations. Correlated noise is a more realistic choice to
describe background neuronal activity and was generated by
a dynamical Ornstein–Uhlenbeck (OU) process following the

Table 1 – Parameters of the seven single fiber actions
potentials used in the simulations

Fiber Amplitude (A) �1(ms) �2(ms) Rate (Hz)

1 15 0.30 0.61 2
2 13 0.35 0.64 4
3 11 0.25 0.54 3
4 9 0.23 0.51 4
5 7 0.29 0.57 3
6 5 0.30 0.60 4
7 3 0.25 0.57 3
Jitter ±0.001 ±0.001 ±0.005
b i o m e d i c i n e 9 1 ( 2 0 0 8 ) 232–244

equation:

Xt+dt = Xt − Xt

�
dt + dWt

where � is the time constant of the process, dt is the simulation
time step and Wt denotes a Wiener process. The simula-
tion time step was 0.001 ms and the sampling period was
0.05 ms. In order to study the effects of noise amplitude on the
performance of PCA, the following procedure was followed:
fifteen different simulated traces were generated for statis-
tical purposes using the spike train generation methodology
previously described. Single OU and white Gaussian noise
implementations have been generated, scaled to yield ampli-
tudes (�) from 0.05 to 3 in steps of 0.05 and linearly added to
the simulated recording trace. Signal-to-noise ratio (SNR) is
the average power ratio between a signal and the background
noise.

SNR (dB) = 10 log

(
Psignal

Pnoise

)
= 10 log

(
mean2

signal + �2
signal

mean2
noise + �2

noise

)

Practically, the mean values of the signal and noise traces
were very close to zero so the above equation was simplified
to:

SNR (dB) = 20 log
(�signal

�noise

)
A total of 15 × 6 single recording-like simulated spike trains

resulted and were subject to the spike sorting methodology
in a semi-automatic way for a different number of principal
components each time. The entry level for principal compo-
nents was two and was repeated until seven components were
considered. The whole process was repeated three times, one
for Gaussian noise and two for correlated noise with � of 0.01
and 0.1 respectively. The specific values of � were selected so
the resulted traces resembled the experimental traces and did
not introduce large non-stationarities. The mean SNR for the
15 traces at the six different levels of noise were the follow-
ing (all values referred in dB): 19.9 (� = 0.05), 14 (� = 0.1), 10.7
(� = 0.15), 8.5 (� = 0.2), 6.9 (� = 0.25) and 5.7 (� = 0.3).

The detection of spike overlaps was made at the generation
time of a spike and was based on the interspike intervals with
the last spikes fired by every other fiber. The absolute values of
these intervals were compared with spike duration (3.5 ms). In
the event of shorter intervals, an index was increased accord-
ingly. In this step, the expected number of spikes for each fiber
was calculated by subtracting all spike overlaps with other
fibers from the total number of spikes fired by the specific fiber.
At the same time, the occurrence times were sorted for further
“offline” analysis.

The simulation program was written in C and run on a
Pentium–Gentoo linux-based machine.

3.2. Spike sorting

For the implementation of the spike sorting algorithm we
utilized the open-source software nev2lkit [29], a preproces-

sor for the analysis of intracellular or extracellular neuronal
recordings that was developed under Cortivis project [39].
Nev2lkit employs PCA feature analysis of the detected spikes,
which are extracted from a continuous recording. During
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he spike extraction process, the root-mean-square of the
ontinuously extracellular recorded signal is estimated. Based
n this value, upper and lower thresholds are set (3× RMS)
nd events are extracted based on a fixed-length data window
1 ms, 2 ms and 4 ms).

We have altered some parts of the program source code in
rder to provide extended functionality to the feature extrac-
ion procedure. The ability to change the length of the data
indow following a 10−1 ms accuracy was added. The fixed

alues (1 ms, 2 ms and 4 ms) prevented us from adopting
n variable-length spiking activity and inserted spike over-
ap artifacts in the PCA process. After this modification, the
MS-based spike extraction module was able to correctly dis-
riminate between noise and signal for all noise levels in our
imulations.

Furthermore, we have added the ability to compute a user
efined number of principal components for spike wave-
orm representation to the nev2lkit software, originally using
he first three by default. This number can now be selected
etween 2 and 7 (m′ ∈ [2,7]). Also, the percentage variance
xplained by this subspace is computed and displayed in the
rogram’s graphical interface. The PCA was carried out on the
orrelation matrix.

Following the feature extraction procedure, the cluster-
ng of the data is performed. Nev2lkit uses klustakwik, a
rogram for unsupervised classification of multidimensional
ontinuous data [8], based on the classification expectation
aximization algorithm [31]. It consists of a semi-automatic

rocess followed by examination and reassignment by a
uman operator [21]. This means that the user has to examine

he output of the clustering process each time it is performed,
.e. the number of clusters-neurons found. The user can then
ccept this output, or decide to alter the definable parameters
f the clustering process and try again. Tunable parameters
f this field are the “maximum number of clusters” and the
penalty mix”. The first defines the maximum possible clus-
ers that the process can produce while the second inserts
ayesian information in the clustering process, as a penalty

ndicator for more clusters. In this step, the functionality of
isplaying the number of spikes assigned to each cluster, as
n additional output of the clustering process, was added to
he program.

.3. Evaluation process

uring the evaluation process, we attempt to quantify the
uccess of the spike sorting procedure. We examine the out-
ut of the spike sorting procedure based on the a priori
nowledge of the input. As previously mentioned, the abil-

ty to directly compute the number of spikes assigned to a
luster has been added to the nev2lkit software. For each
luster, this number is compared with the number of spikes
red by the corresponding neuron minus the number of over-

aps.
We introduce a new cluster error definition to favor over-

lustering over under-clustering errors. Our neurophysiology

xperts pointed out that in the manual human-employed
pike sorting process, over-clustering can often be addressed
n a less time-consuming way than under-clustering. This is
ossible using the cluster-merging functionality that most
i o m e d i c i n e 9 1 ( 2 0 0 8 ) 232–244 235

manual spike sorting software titles offer. On the other hand,
if under-clustering cannot be addressed by a fine-tuning of
the automated clustering process, it can only be addressed by
a repeated manual assignment from the experimentalist. In
this case, the experimentalist has to separate each spike of
the merged cluster based on his subjective judgment of the
spike’s shape.

There are two important measures when one evaluates a
spike sorting method: (a) the number of clusters being decided
by the spike sorting procedure versus the actual number of
clusters and (b) the number of spikes assigned in each cluster
and the corresponding false positive–negative spikes versus
the number of spikes that are expected to be classified under
each cluster.

If we consider a number of e expected clusters, with ne

being a member of this cluster set (ne = 1, 2,. . ., e), and a number
of c computed clusters by the spike sorting procedure, with nc

being a member of this cluster set (nc = 1, 2,. . ., c), then we may
define the following:

(a) for the e number of clusters, we consider N(ne) as the num-
ber of neurons expected to be classified per cluster, S(ne)
as the number of spikes expected to be classified per clus-
ter and SNOISE(e) as the number of spikes expected to be
marked as overlaps or “noise”.

(b) for the c number of clusters, we consider N(nc) as the num-
ber of neurons classified per cluster, S(nc) as the number of
spikes classified per cluster and SNOISE(c) as the number of
spikes marked as overlaps or “noise” by the classification
procedure. We also consider Fp(ne) as the number of false-
positive spikes to ne that are part of S(nc) but are seen as
“outliers” in nc either because their corresponding group
of spikes belong to nc

′ (nc
′ # nc) or because they originally

belonged to SNOISE(e) and they should have been classi-
fied as part of SNOISE(c). Accordingly, Fn(ne) is considered
as the number of false-negative spikes of ne that originally
belonged to S(ne) and should have been classified as part
of S(nc).

For the total spike sorting procedure the following is true:

e∑
ne=1

Fn(ne) =
e∑

ne=1

Fp(ne) + (SNOISE(c) − SNOISE(e))

=
e∑

ne=1

Fp(ne) + �SNOISE (3)

Also, since N(ne) = 1, we expect to find one neuron classified
under each of the e clusters, and

e∑
ne=1

S(ne) + SNOISE(e) ≤ n

as the total number of spikes expected to be classified by the
spike sorting process can be less or equal to the total n number

of SFAPs that were subject to this procedure, due to potential
overlaps. This happens when two or more SFAPs overlap, two
or more spikes are missing from the per cluster expected
classification while only one spike is added to the “noise”



s i n

∑ ∑
236 c o m p u t e r m e t h o d s a n d p r o g r a m

cluster. It is obvious that equality is achieved in absence of
overlaps.

Regarding the corresponding c computed values, in order
to draw mathematical inferences we have to distinguish three
separate cases, depending on c.

(1) c = e
In the first and simplest case, every neuron has been prop-
erly assigned to a cluster (N(nc) = 1, nc = 1, 2, . . ., c), which
means the number of computed clusters will equal the
number of expected clusters, or c = e. The issues to be
addressed in this case are the number of spikes assigned
per cluster and the number of corresponding false-positive
spikes. In other words, if each neuron’s whole activity is
classified under the same cluster, or if some spikes are
missing or even if some other spiking activity is classified
under the same cluster.
Generally a per cluster percentage error can be defined as:

cluster error(ne) = Fn(ne) + Fp(ne)∑e

ne=1S(ne) + SNOISE(e)
× 100%

By definition:

S(ne)−Fn(ne)+Fp(ne) = S(nc)⇒Fn(ne) = S(ne)−(S(nc) − Fp(ne))

= S(ne) − S(nc) + Fp(ne) (4)

Taking into consideration the above equation and since all
the c-related values are computed by the spike sorting pro-
cess, the per cluster percentage error can also be written
as:

cluster error(ne) = S(ne) − S(nc) + 2Fp(ne)∑e

ne=1S(ne) + SNOISE(e)
× 100%

nc, ne = 1, 2, . . ., c (ne corresponds with nc based on the clus-
ter under consideration).
Finally, the overall per spike train percentage error is:

errorspike train =
e∑

ne=1

cluster error(ne)

(2) c < e
The second case is defined by c < e; this means that the
number of computed clusters is less than those expected
which can only happen when the spike sorting process
assigns neuronal activity of more than one neurons to
the same cluster (N(nc) ≥ 2, for at least one cluster). Visu-
ally it can be observed when at least one cluster carries
spikes whose shapes match the shapes of two or more cor-
responding neurons’ SFAPs. This case could be described
as an “under-clustering” case and before the correspond-
ing errors are defined, a few more assumptions should be
made. If c is the number of clusters computed by the spike
sorting process, we consider cp as the number of clusters
properly computed, with n

p being a member of this clus-
c

ter set (np
c = 1, 2, . . . , cp and cp ≤ c − 1, since in this case the

number of properly computed clusters can only be less
than the clusters computed by the spike sorting process).
We also consider cu as the number of under-clustering
b i o m e d i c i n e 9 1 ( 2 0 0 8 ) 232–244

clusters (i.e. the total number of clusters with assigned
spikes of more than one neuron), with nu

c being a member
of this cluster set (nu

c = 1, 2, . . . , cu). Then the following are
true:

cp + cu = c (5)

cp∑
n

p
c =1

N(np
c ) +

cu∑
nu

c =1

N(nu
c ) = e (6)

cp∑
n

p
c =1

N(np
c ) = cp, since N(np

c ) = 1 (7)

Eq. (5) states that the sum of the number of clusters
properly computed with the number of under-clustered
clusters equals the total number of clusters computed by
the spike sorting process. Eq. (6) states that the sum of the
total number of neurons classified per properly computed
cluster plus the sum of the total number of neurons clas-
sified per under-clustered cluster equals the total number of
clusters that are expected to be found by the spike sorting
process, as computed in the spike train generation pro-
cedure. Eq. (7) is simply based on the fact that only one
neuron is assigned to each of the properly computed clus-
ters, so the sum of assigned neurons equals the number
of clusters containing these neurons.
From these three equations, subtracting the first two we
get:

cu∑
nu

c =1

N(nu
c ) − cu = e − c (8)

If we take into consideration that

∑cu

nu
c =1N(nu

c )

cu ≥ 2 (9)

which derives from the fact that N(nu
c ) ≥ 2 (i.e. each of the

nu
c clusters should have at least two neurons assigned),

Eqs. (8) and (9) give: cu ≤ (e − c). At the same time Eq.
(5) restricts the cu range, as cu ≤ c. These restrictions
define a finite set of solutions based on the fixed (e − c)
value and the number of clusters (c) found in the spike
sorting process. This means that when the spike sorting
process computes the total number of clusters c, there are
only certain integer combinations of N(nu

c ) and cu which
confirm this equation. Depending on which of the two
parts seems a more convenient estimation, using the
above equation the correct value that fits the other part
can be computed. According to this, Eq. (8) can have the
following two expressions:

cu cu
nu
c =1

N(nu
c ) = (e − c) + cu or cu =

nu
c =1

N(nu
c ) − (e − c)

The corresponding percentage cluster error here is defined
in two parts; for the first cp clusters we have:
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cluster error(ne) = Fn(ne) + Fp(ne)∑e

ne=1S(ne) + SNOISE(e)
× 100% or

cluster error(ne) = S(ne) − S(np
c ) + 2Fp(np

c )∑e

ne=1S(ne) + SNOISE(e)
× 100%

n
p
c , ne = 1, 2,. . ., cp (ne corresponds with n

p
c based on the

cluster under consideration), while for the remaining cu

clusters let us also consider firstly its general form:

cluster error(ne) = Fn(ne) + Fp(ne)∑e

ne=1S(ne) + SNOISE(e)
× 100%

where ne refers to the expected value of the cluster
containing each neuron (ne = 1, 2, . . ., e − cp).
As shown in Appendix A, the cluster percentage error can
also be written as

cluster error(ne) = S(nu
c ) − S(ne) + 2Fn(ne)∑e

ne=1S(ne) + SNOISE(e)
× 100%

where nu
c refers to the under-clustered cluster

(nu
c = 1, 2, . . . , cu) that contains this neuron.

Again the overall per spike train percentage error

is:errorspike train =
e∑

ne=1

cluster error(ne)

3) c > e

The third case is defined by c > e when the number of com-
uted clusters is greater than those expected. Furthermore,

t is referred to as “over-clustering” (N(nc) < 1, for at least one
luster). We consider the following: if c is the number of clus-
ers computed by the spike sorting process, let cp be the
umber of clusters properly computed and n

p
c being a mem-

er of this cluster set (np
c = 1, 2, . . . , cp and cp ≤ e − 1, since in

his case the number of properly computed clusters can only
e less than the clusters expected by the spike sorting pro-
ess), and co as the number of over-clustering clusters (i.e. the
otal number of clusters with assigned spikes of less than one
pecific neuron), with no

c being a member of this cluster set
no

c = 1, 2, . . . , co). Then the following are true:

p + co = c (10)

cp∑
p
c =1

N(np
c ) +

co∑
no

c =1

N(no
c ) = e (11)

cp∑
p
c =1

N(np
c ) = cp, since N(np

c ) = 1 (12)

As before, from Eqs. (10)–(12) we get:
o −
co∑

no
c =1

N(no
c ) = c − e (13)
i o m e d i c i n e 9 1 ( 2 0 0 8 ) 232–244 237

and

co∑
no

c =1

N(no
c ) = co − (c − e) or co =

co∑
no

c =1

N(no
c ) + (c − e)

By definition, in the over-clustering case each neuron that
fit in the co clusters will be divided at least in two parts. This
means that the total number of neurons described by the co

clusters cannot be more than co/2:

co∑
no

c =1

N(no
c ) ≤ co

2

The above equation derives from the fact that for a partic-
ular under-clustered neuron, the sum of all N(nc) (referred to
the clusters that it is divided) equals to 1. Therefore, the total
number of under-clustered neurons that fit in the co clusters
can be noted as

∑co

no
c =1N(no

c ).

So, if we take into consideration that

∑co

no
c =1N(no

c )

co
≤ 1

2
(14)

Eqs. (13) and (14) give:

co ≤ 2(c − e) (15)

It is also true, as mentioned before, that cp ≤ e − 1. From Eq.
(10) this means that:

co ≥ (c − e) + 1 (16)

Together Eqs. (15) and (16) give:(c − e) + 1 ≤ co ≤ 2(c − e) or
1 ≤ co − (c − e) ≤ (c − e) and by taking into account Eq. (13) we
have:

1 ≤
co∑

no
c =1

N(no
c ) ≤ (c − e) (17)

Eq. (17) defines a finite set of solutions that is also based
on the fixed (c − e) value in the spike sorting process and
moreover that the volume of solutions (i.e. possible cases of
under-clustered neurons) is equal to (c − e).

The corresponding percentage cluster error here is defined
in two parts; for the first cp clusters we have:

cluster error(ne) = Fn(ne) + Fp(ne)∑e

ne=1S(ne) + SNOISE(e)
× 100% or

cluster error(ne) = S(ne) − S(np
c ) + 2Fp(np

c )∑e

ne=1S(ne) + SNOISE(e)
× 100%

n
p
c , ne = 1, 2, . . ., cp (ne corresponds with n

p
c based on the cluster

under consideration), while for the remaining co clusters let

us consider firstly its general form:

cluster error(ne) = Fn(ne) + Fp(ne)∑e

ne=1S(ne) + SNOISE(e)
× 100%
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As shown in Appendix B, this error takes the following
form:

cluster error(ne) = 1
j

j∑
i=1

[
S(ne) − S(no

c (i)) + 2Fp(ne(i))∑e

ne=1S(ne) + SNOISE(e)

]
× 100%

where ne refers to the expected value of the cluster containing
each neuron (ne = 1, 2, . . ., e − cp), i = 1, 2, . . ., j and no

c (i) refer to
the j over-clustered clusters that contain parts of this neuron.
Fp(ne(j)) describes the false positive spikes of ne in respect to
each of the j clusters.

Again the overall per spike train percentage error is:

errorspike train =
e∑

ne=1

cluster error(ne)

Online versions of the derived parametric equa-
tions for under- and over-clustering can be found in
http://neurobot.bio.auth.gr/ss clust model.php.

In each step during the evaluation process, the best clus-
ter fit was achieved by tuning the above-mentioned clustering
variables. The best-fit criterion followed a simple algorithm:
the number of clusters found by the clustering process ought
to be the same with the number of neurons activated in the
spike train or at least as many as them and not less, if pos-
sible. Fewer clusters found would lead to higher error rates,
as defined by the under-clustering case above. This case was
considered only when it was the only available outcome of the
clustering process.

The implementation of the spike sorting methodology for
our simulated spike trains used a default time-window defin-
ing the spike waveform length at 3.7 ms. Based on this window,
the spike waveforms were extracted from the spike trains and

inserted into the PCA process. Under high levels of noise, a few
cases occurred where under-clustering was unavoidable no-
matter the number of principal components engaged (in the
[2–7] range). In these cases, the time-window was decreased in

Fig. 2 – Exemplary experimental and simulated traces. (A) Exper
(� = 0.15) and (C) simulated spike train under Ornstein–Uhlenbeck
(au), ordinate: voltage (au).
b i o m e d i c i n e 9 1 ( 2 0 0 8 ) 232–244

steps of 0.1 ms until under-clustering was avoided for at least
one set of principal components. The evaluation process was
then performed for this value of window duration.

In the last step and after the cluster decision was taken,
the number of spikes for every cluster was estimated. For
these cluster memberships, their spike timing information
was directly compared to the firing activity of their corre-
sponding neuron in order to estimate the number of false
positive/negative spikes and the classification error rates were
computed.

3.4. Experimental data

We wish to model the spontaneous activity of respiratory
motoneurons recorded with “hook” electrodes in vitro from the
right nerve of the 3rd abdominal ganglion of the beetle Tenebrio
molitor as described in [5]. An exemplary experimental trace
is shown in Fig. 2A where SFAPs with different amplitudes
correspond to different axons within the nerve trunk.

3.5. Enhancing the ability of nev2lkit for parameter
space investigation

The following features, visualized in Fig. 4A, were added to
nev2lkit spike sorting software, improving its performance and
capabilities:

(1) Variable length data window: the ability of applying princi-
pal component analysis on a variable-length data window
was implemented, following 0.1 ms accuracy. The data
window defines the spike waveform length that is taken
into account in the spike extraction process and after-
wards inserted into PCA. With this feature, the software

can adopt in variable-length spiking activity and overcome
the insertion of spike overlap artifacts.

(2) Variability of principal components: we have added the abil-
ity to select the number of principal components used for

imental trace, (B) simulated spike train with Gaussian noise
noise (� = 0.01 and � = 0.15). For all panels, abscissa: time

http://neurobot.bio.auth.gr/ss_clust_model.php
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spike waveform representation by PCA. This number can
now be selected between 2 and 7.

3) Calculation and display of variance: in spike waveform rep-
resentation by the principal components, the percentage
variance explained by that subspace is computed and dis-
played in the program’s graphical interface.

4) Spike count in each cluster: besides the total count of the
detected spikes by the extraction process, the functional-
ity of displaying the number of spikes assigned to each
cluster (as an additional output of the clustering process)
was added.

The patch including all of the above-mentioned
dditions to the nev2lkit software is available at
ttp://neurobot.bio.auth.gr/nev2lkit.

. Results

.1. Simulation results

s mentioned in Section 2, 15 traces at 6 different noise lev-
ls and 3 different noise cases were subjected to the PCA–EM
lgorithm in a semi-automatic way for a different number
f principal components each time. We show realizations of
imulated traces with Gaussian noise and with OU noise in
ig. 2B and C, respectively. An exemplary table of results for
ne trace (Gaussian noise, � = 0.25) is shown in Table 2. For
ach SFAP (N = 7, first column) the number of spikes gener-
ted (second column) and the ones expected to be detected
third column) are shown. The number of spikes that took
art in overlaps is characterized as noise and it is computed
eparately. The following pairs of columns contain the out-
ut of the semi-automatic spike sorting process for each fiber
long with the accompanying error percentage. These values
re estimated separately for all the different principal compo-
ent sets, from the first two up to the first seven. Finally, in

ach case, the amount of variance explained by the principal
omponents that are taken into account is shown, while the
verall error percentage is also computed. Table 2 includes an
nder-clustering case under the three principal components

Table 2 – Exemplary analysis table for one artificial trace

Gaussian noise with � = 0.25 (SNR = 6.9). The spike sorting process was app
the number of spikes found, the false positives estimated and the percent
total number of false negatives per process is calculated using Eq. (4). Note
3 principal components were used in the spike sorting process.
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column, where the spikes from fibers 5 and 6 are shown to
have been classified under the same cluster. According to the
methodology described above, this leads to high error rates as
it can be verified in the corresponding column.

The different sets of principal components (PC) used in the
spike sorting process along with the different levels of noise
and the mean error rates define 3D planes displayed in Fig. 3
for the three noise types. The Gaussian noise case is shown
is row A and the OU noise for � 0.01 and 0.1 in rows B and
C, respectively. We only illustrate noise levels from � = 0.15 to
� = 0.3 for clarity purposes.

In the Gaussian noise case the mean error rates are negli-
gible (around 1%) for low levels of noise (� ≤ 0.1) when the first
three or more PCs are used. As the noise level increases the
use of the first two PCs leads to the highest error rates. Includ-
ing the 3rd PC significantly increases the error rates for noise
levels higher than � = 0.2. The only case where the error rate
is kept under 2%, under all noise levels, is when the first four
PCs are considered. All other sets of principal components,
including less and more than four, result in significant higher
error rates. We verified the statistical significance of our con-
clusion by applying a statistical t-test on the error-rate values
of the 15 sample spike trains for every noise level. The results
for statistical significance at the 5% level are schematically
shown in Fig. 3A2. Each of the six tables in this panel com-
pares a set of principal components indicated on top of the
table with the other sets (from 2 to 7) at all noise levels. Grey
boxes indicate no statistically significant difference (p > 0.05),
while white indicate that the set of PCs under comparison pro-
duce statistically significant (p < 0.05) lower error levels than
the set they are compared with. Black boxes indicate that the
set of principal components under comparison produce sta-
tistically significant (p < 0.05) higher error levels than the set
they are compared with. Again, the use of four PCs provides
the best results on average, and especially for higher noise
levels, as the corresponding table contains no black boxes. All
other sets contain at least one black box, they produce higher

error rates that is, when compared to 4 at some noise level.
Since different sets of principal components insert different
levels of variance of the initial data set into the spike sorting
process, it can be inferred for this case that the first four prin-

lied for a variable number [2–7] of principal components. In each line
age error per cluster are shown. In the last cell of the Fp column, the

that under-clustering has occurred between clusters 5 and 6, when

http://neurobot.bio.auth.gr/nev2lkit
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Fig. 3 – (Column 1) 3D graph of the mean error rates vs the set of principal components vs the noise level. (Column 2)
Schematic representation of statistical significance of the mean error rates at the 0.05 level using t-test. Grey boxes indicate
no statistically significant difference (p > 0.05). White (black) boxes indicate that the set of PCs under comparison produce

an t
stein
statistically significant (p < 0.05) lower (higher) error levels th
(Row B) Ornstein–Uhlenbeck noise with � = 0.01, (Row C) Orn

cipal components carry the optimum amount of variance for
which the spike sorting algorithm reaches to more accurate
results.

When correlated noise with a relative low correlation
constant (� = 0.01) is considered the use of two PCs yields
excessively high error levels for all noise amplitudes (panel
3B1). Taking into account the third PC dramatically improves
the algorithm’s performance. Consistently, 4, 5 and 6 PCs dis-
play the best performance overall as evident by the statistical
comparison in panel 3B2. Increasing the number of PCs to
seven has negative effects on the error rate especially for high
noise levels.

A 10-fold higher correlation constant (� = 0.1, panel 3C1)
provides a smoother transition. Two PCs display the highest
error levels, though lower than the corresponding ones for
� = 0.01, and 3 PCs are inferior to 4–7 PCs only for a specific noise

amplitude (� = 0.2, panel 3C2). Four PCs provide marginally the
best overall performance while seven PCs do not suffer from
high noise levels as it was the case for the lower correlation
constant value.
he set they are compared with. (Row A) Gaussian noise,
–Uhlenbeck noise with � = 0.1.

White Gaussian noise is characterized by a power spectral
density that has equal power in all bands while correlated
noises present higher power in low frequencies. The effect
of these types of noise on spike shape underlie the observed
differences on the algorithm’s performance. High frequency
components override the spike when white Gaussian noise is
added. On the other hand, correlated noise mainly affects the
spike with low frequency components changing coarser shape
characteristics. The first PC will be assigned to the direction
with the largest variation, the second with the second one and
so forth until the originally data is fully described. The first
few PCs perform better with Gaussian noise of small ampli-
tude as this type of noise does not significantly affect coarse
characteristics of the spike, representing the largest variance.
However, for large amplitudes a lot of the variance introduced
by subsequent PCs is dedicated to describe noise and the

error rates rise. On the other hand, the effects of correlated
noise on coarse spike characteristics are more prominent;
consequently, a small number of PCs is unable to correctly
describe the data. Often, the variability introduced by this type
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f noise is described by high-ordered PCs yielding excessively
igh error rates in low dimensional feature spaces. The use
f subsequent PCs helps to better describe the spike shape
nd correctly identify the clusters. The effect of the correla-

ig. 4 – (A) An extracellular recording from the beetle’s Tenebrio m
rogram. The time scale was initially set at 2 ms. In order to acco
odification of the time-window to 2.6 ms, using the slide-whee

our principal components for spike representation. According to
xplained by these four principal components reaches 80%. The
196. (B) The firing rates of fibers 1, 2 and 3 are shown.
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tion constant on spike sorting performance will depend on the
interplay of the corresponding dominant frequency band and
of the spike shape dynamics. In a general consideration, the
use of three PCs as suggested in the neuroscience literature

olitor peripheral nervous system was opened by the
unt for variable-length spiking activity we demonstrate the
l. In the next step, we apply PCA to the data using the first
the program’s calculations, the total amount of variance

program also informs us that the total number of spikes is
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is outperformed by the employment of more PCs, considering
the type of data we are examining.

4.2. Experimental results

Following our simulation results, we applied the spike sorting
methodology employing the first four principal components
to our laboratory recordings. These are extracellular record-
ings taken from the right nerve of the 3rd abdominal ganglion,
connecting the ganglion with the respiratory muscles of the T.
molitor beetle. The recorded activity is the summation of the
electrical activity of a finite number of motor neuron fibers
that control a specific respiratory muscle area of the beetle.
An example of such a recording can be seen in Fig. 2A. Exper-
imental traces were analyzed separately by a panel of insect
neurophysiology experts in our lab (n = 3) each of whom has
considerable experience with similar data. This analysis con-
sists mainly in measuring the amplitude of each spike and
visually inspecting the spike shapes to decide on the number
of units present in the recording.

The spike sorting process revealed the presence of three
different active neuron fibers and classified their spikes in
three different clusters as shown in Fig. 4A. This result was in
agreement with our panel of experts. Taking advantage of the
information in spike timings extrapolated during the PCA–EM,
we reconstructed the time series of each neuron and com-
puted their rate histograms [40]. The histograms were based
on the number of spikes per second, as counted in small
bins of 80 ms, while the graph1 was smoothed after compu-
tation with a Gaussian window function (Fig. 4B). We can see
that fibers 1 and 3 follow a tonic firing pattern, while fiber 2
displays a rhythmic activity. Fiber 2 is identified as a burst-
ing pacemaker neuron representing the driving unit of the
respiratory central pattern generator. This analysis provided
means of understanding the organization of the respiratory
system in an insect from single-electrode extracellular record-
ings revealing a single pacemaker neuron providing the basic
respiratory rhythm.

5. Conclusion

This paper introduces tools to estimate the optimum feature
space of a PCA-based algorithm for spike sorting of nerve
trunk recordings. We simulated series of randomly distributed
action potentials from a total of seven distinct units and intro-
duced a new metric to define clustering errors. We modeled
background activity with Gaussian and correlated noises each
having different effects on the performance of the algorithm.
For moderate noise levels, a statistically important minimum
in classification error rates emerged when the set of the four
principal components was considered. This result may be
valuable to a large number of neurophysiologists working on

extracellular nerve trunk recordings with single electrodes.
The patch for the nev2lkit program and the newly introduced
metric are available online and can be used in the evaluation
of PCA-based spike sorting algorithms.

1 Fig. 4B was created with the demo version of Neuroexplorer
Software [41].
b i o m e d i c i n e 9 1 ( 2 0 0 8 ) 232–244
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Appendix A

If we consider ne1 and ne2 as two members of the e cluster
set that are falsely merged into nu

c by the clustering process, a
process identified as “under-clustering”, then the following is
true2:

S(ne1) − Fn(ne1) + S(ne2) − Fn(ne2) + Fp(ne1, ne2) = S(nu
c ) (A)

where Fp(ne1, ne2) represents the false positive spikes that are
part of S(nu

c ) but can be considered as “outliers” to both ne1 and
ne2, i.e. they originally belong to some third member of the e
cluster set or they could be identified as overlaps.

Again we will consider the cluster error for ne1 as (the same
apply for ne2 respectively):

cluster error(ne1) = Fn(ne1) + Fp(ne1)∑e

ne=1S(ne) + SNOISE(e)
× 100%

In respect to ne1, spikes belonging to ne2 that were classified
under the same cluster, defined as [S(ne2) − Fn(ne2)], can also be
considered as false positives in nu

c . So,

Fp(ne1) = S(ne2) − Fn(ne2) + Fp(ne1, ne2) (B)

Taking Eq. (A) into account, Eq. (B) becomes:

Fp(ne1) = S(nu
c ) − S(ne1) + Fn(ne1)

Finally, taking into account all the above, the percentage
cluster error becomes:

cluster error(ne1) = S(nu
c ) − S(ne1) + 2Fn(ne1)∑e

ne=1S(ne) + SNOISE(e)
× 100%

and accordingly for every ne that is under-clustered in nu
c

cluster error(ne) = S(nu
c ) − S(ne) + 2Fn(ne)∑e

ne=1S(ne) + SNOISE(e)
× 100%

In practice, we may well approximate the cluster error with:

cluster error(ne) = S(nu
c ) − S(ne)∑e

ne=1S(ne) + SNOISE(e)
× 100%

for two reasons: the first is that, when under-clustering occurs,
the total number of S(ne1) and S(ne2) belong to S(nu

c ) and we have
no partitioning since the clustering process simply fails to par-

tition them. Thus, in this case we have no false negatives. The
second is that if we assume that some false-negative spikes
existed, they would have a very small contribution to the per-
centage error comparing to the corresponding false positive

2 The following can easily be shown for more than two members
of the e cluster set that are merged in the same cluster.
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hich includes the total number of spikes belonging to ne2 as
tated above.

ppendix B

f we consider ne as member of the e cluster set that are falsely
ivided (over-clustered) into two parts, i.e. no

c (1) and no
c (2), by the

lustering process, then the following is true3:

(ne) = S(no
c (1)) − Fp(ne(1)) + S(no

c (2)) − Fp(ne(2)) (D)

Fn(ne(j)) and Fp(ne(j)) describe the false negative and posi-
ive spikes of ne in respect to each of the j clusters.

Also Fn(ne(1)) and Fn(ne(2)) in this case are:

n(ne(1)) = S(no
c (2)) − Fp(ne(2)) (E)

n(ne(1)) = S(no
c (2)) − Fp(ne(2)) (F)

ince the spikes that are missing from ne in respect to cluster
o
c (1) exist in no

c (2) and the spikes that are missing from ne in
espect to cluster no

c (2) exist in no
c (1).

Using Eq. (D), Eqs. (E) and (F) become:

n(ne(1)) = S(ne) − S(no
c (1)) + Fp(ne(1)) (G)

n(ne(2)) = S(ne) − S(no
c (2)) + Fp(ne(2)) (H)

In order to estimate the percentage cluster error for ne,
enerally defined as

luster error(ne) = Fn(ne) + Fp(ne)∑e

ne=1S(ne) + SNOISE(e)
× 100%,

e would not want this error to be proportional to j, i.e. to rise
roportionally to j since, as already stated, over-clustering is
andled with manual cluster-merging and this can be thought
s a process whose difficulty is independent of j.

So we will average the error in respect to j (in our case 2):

cluster error(ne)

= (1/2)[Fn(ne(1)) + Fp(ne(1)) + Fn(ne(2)) + Fp(ne(2))]∑e

ne=1S(ne) + SNOISE(e)
× 100%

(I)

Taking into account Eqs. (G) and (H), Eq. (I) becomes:

cluster error(ne)

=1
2

[S(ne)−S(no
c (1))+2Fp(ne(1))] + [S(ne) − S(no

c (2)) + 2Fp(ne(2))]∑e

ne=1S(ne) + SNOISE(e)

×100% = 1
2

2∑
i=1

[
S(ne) − S(no

c (i)) + 2Fp(ne(i))∑e

ne=1S(ne) + SNOISE(e)

]
× 100%
3 The following can easily be shown if a member of the e cluster
et is divided to more than two clusters.
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For every ne that is over-clustered in no
c (j) clusters

cluster error(ne) = 1
j

j∑
i=1

[
S(ne) − S(no

0(i)) + 2Fp(ne(i))∑e

ne=1S(ne) + SNOISE(e)

]
× 100%
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