Parametric Study of

 $CO+O
ightarrow CO_2$

parametric_study.py

This script runs the apothesis on different input.kmc files by taking different y_{CO} and y_O

Script code

```
import os
import shutil
from decimal import Decimal
stoichiometric coeff = Decimal(0.9) \# yCO = 0.1
stoichiometric coeff step = Decimal(0.1) # Increment by 0.1
each time
step = 2
while (stoichiometric coeff <= Decimal(0.9)):</pre>
    file content = f"""
    #Build the lattice
    lattice: SimpleCubic 100 100 A
    #The growing film
    growth: CO2
    #Create steps (alaways in the x-direaction - see above
```

```
#(e.g. if 10 each step will consist of two atoms),
height difference (each step will increase by 20, so 1st
step: 10, 2nd: 30, 3rd, 50 etc)
    #steps: 2 1
    #Total time in seconds
    time: 1000
    #T in Kelvin
    temperature: 1000
    #P in Pascal
    pressure: 101325
    #Random number initialization
    #random: 123434432
    #Simple s0*f*P/(2*pi*MW*Ctot*kb*T) -> Sticking
coefficient [-], f [-], C tot [sites/m2], MW [kg/mol]
    #A + * -> A*: simple 0.1 2.0e-4 1.0e+19 0.032
    #Constant is a constant value in [ML/s]
    CO + * \rightarrow CO^*: constant
{Decimal(stoichiometric coeff).prec()} #0.389
    #Constant is a constant value in [ML/s]
    02 + 2* -> 20*: constant {Decimal((Decimal(1.0) -
Decimal(stoichiometric coeff)) / Decimal(4.0))} all #0.611
    #A reaction
```

CO* + O* -> CO2*: constant 1.e+15

#Example of growth reaction. The 1sr reactant is tranformed to the 1st product, the 2nd reactan to the 2nd product etc.

#If #Reactants > #Products then only the first Nth reactants are tranformed to the (N-x) reactants.

#Products that have "*" stay on the lattice (adsorbed)

#products that do not have "*" are assumed to desorb
instantly.

#CO* + O* -> CO2* : constant 0.25e+5

#Time to write in log
write: log 0.1

#Time to write the lattice heights & species
write: lattice 10

#Report the coverage of certain species. The time will follow the write in log file

```
report: coverage CO* O*
"""
with open("input.kmc", "w") as f:
   f.write(file_content) # Write the new input.kmc file
os.system(f"./apothesis") # Run apothesis on the new
```

input.kmc

Store the log file into the output file

```
shutil.copyfile("Output.log",
f"parametric_study/output{step}.txt")
```

Increment the stoichiometric coefficient

```
stoichiometric_coeff += stoichiometric_coeff_step
step += 1
```

This script uses an already present input.kmc format to tweak it's constant values to different values using a for-loop.

Output cleaning done

I used a python script to take the log file and filter out. The outputCleaner.py is shown below

```
num_files = 9 # Number of output files to read
first_line = 18 # First line of the output file to read
for i in range(num_files):
    # Empty the output file
    op_f = open(f"outputCleaned{i+1}.txt", "w")
    op_f.close()
for i in range(num_files):
    f = open(f"output{i+1}.txt", "r")
    lines = f.readlines()
    count = 1
```

```
for line in lines:
    if count < first_line:
        count += 1
        continue
        op_f = open(f"outputCleaned{i+1}.txt", "a")
        # Write the first, second, last and second last
columns</pre>
```

```
op_f.write(f"{line.split()[0]} {line.split()[1]}
{line.split()[-1]} {line.split()[-2]}\n")
```

```
op_f.close()
count += 1
```

Results obtained

At the end of the run

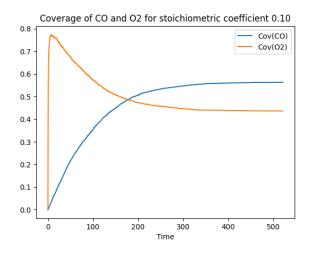
Time Step	y_{CO}	y_O	Growth Rate	Coverage CO	Coverage O
521.151286357571	0.1	0.225	0.000000	0.563200	0.436700
162.249006918567	0.2	0.2	0.000000	0.723500	0.276400
96.2229559039675	0.3	0.175	0.000000	0.840000	0.159900
48.324643413304	0.4	0.15	0.000000	0.922700	0.077200
35.6641534122616	0.5	0.125	0.000000	0.968800	0.031100
24.5319763553839	0.6	0.1	0.000000	0.988000	0.011900
16.5580035178922	0.7	0.075	0.000000	0.993800	0.006100
12.2896587652807	0.8	0.05	0.000000	0.996200	0.003700

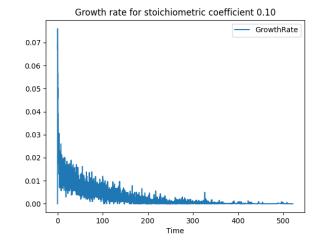
Time Step	y_{CO}	y_O	Growth Rate	Coverage CO	Coverage O
9.96456773722922	0.9	0.025	0.000000	0.999500	0.000200

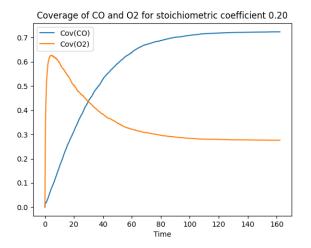
Graphs obtained over time of the run

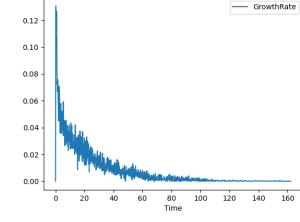
Script used to obtain plots

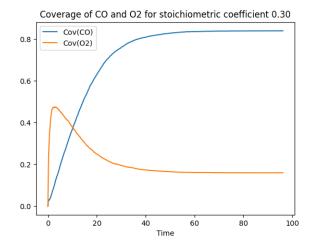
```
import pandas as pd
from decimal import Decimal
num files = 9 # Number of output files to read
for i in range(num files):
    df = pd.read csv(f"outputCleaned{i+1}.txt", sep=" ",
header=None)
    df.columns = ["Time", "GrowthRate", "Cov(CO)",
"Cov(02)"]
    # Plot the coverage of CO and O2
    res1 = df.plot(x="Time", y=["Cov(CO)", "Cov(02)"],
title=f"Coverage of CO and O2 for stoichiometric coefficient
{round(Decimal(0.1 + i * 0.1), 2)}").get_figure()
    res1.savefig(f"coverage{i+1}.png")
    # Plot the growth rate
    res2 = df.plot(x="Time", y="GrowthRate", title=f"Growth
rate for stoichiometric coefficient {round(Decimal(0.1 + i *
```

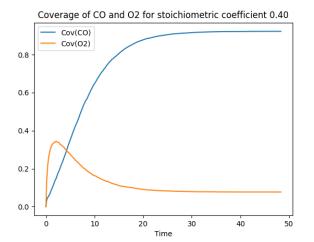

 $0.1), 2)\}")$

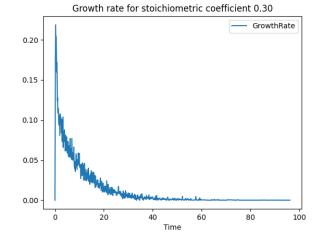

Inference from plots

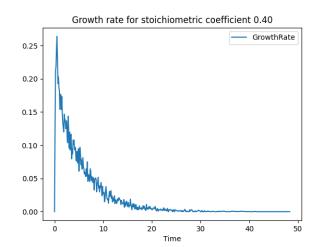

- The growth rate quickly grows to a maximum and then slowly goes to zero over time.
- The coverage of o increases with increasing stoichiometric coefficient.
- The magnitude of growth rate is low initially, increases to a kind of a maximum and then decreases again, perhaps closer values of *Y*₀ and *Y*_{C0} give a higher growth rate or there exists an optimal value of the growth rate.
- Coverage of co increases initially to a maximum and then slowly drops down to 0, the magnitude of this maximum decreases with it's stoichiometric coefficient.

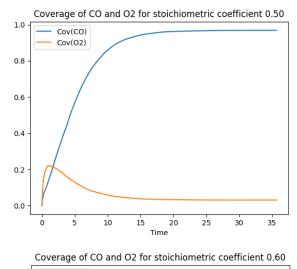

Plots obtained

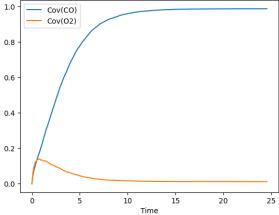

Incase the plots aren't visible, kindly turn the page over.

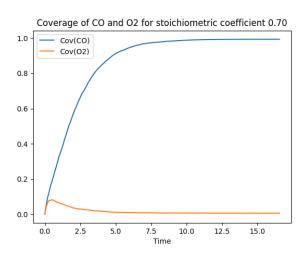


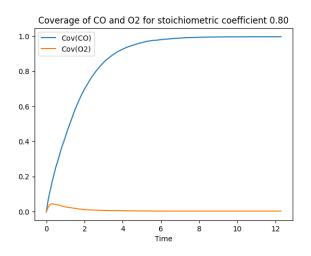


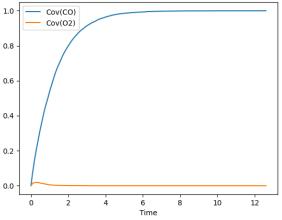


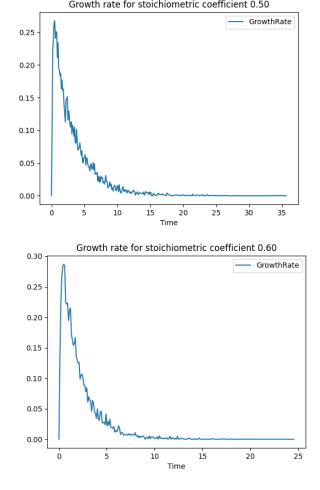


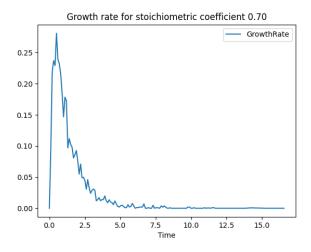


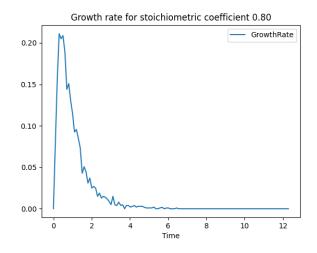


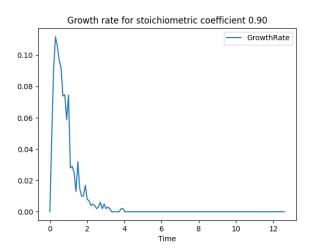











Coverage of CO and O2 for stoichiometric coefficient 0.90

