
Data Engineering
Lab-6

Music Listener Behavior Analysis

Team Members - GROUP 7(Project), GROUP 6(Lab):
1) Bhala Vignesh Chittiporlu (B22AI015)
2) S Manikanta Varshit (B22AI038)
3) Sushrut Barmate (B22AI040)

Project Overview & Deliverables:

1. Github Repo: https://github.com/legend4137/Statify



Technologies:

Data Engineering

Each layer in the architecture serves a specific function in the pipeline, detailed below:

Data Ingestion

● Sources:
○ Spotify API: Retrieves track attributes (e.g., energy, valence,

danceability). [Link]
○ Kaggle: Got Spotify Million Dataset for various features. [Link]
○ Users: Made 1000 Dummy users with different genres, different tracks

listened and very much hybrid choices for better classification.
● Tools Used:

○ Spotify API: Collects audio features and track metadata.
○ MongoDB Atlas: Used MongoDB Atlas for better Data Visualization and

Elasticsearch Queries.
● Docker Integration:

○ The ingestion scripts are containerized using Docker, ensuring consistent
deployments across environments and simplifying replication of the entire
pipeline.

https://developer.spotify.com/
https://www.kaggle.com/datasets/notshrirang/spotify-million-song-dataset?resource=download


Data Processing

● Data Cleaning:
○ Pandas and Python: Data cleaning functions standardize and cleanse

the data by handling null values, removing duplicates, and ensuring
reliable feature consistency.

● Mood Classification:
○ Assigning mood categories based on Thayer’s and Russell’s models (e.g.,

high energy, low valence for ‘anger’). [RESEARCH PAPER]

Getting USER_MOOD from the database by applying standard deviation of all tracks’
energy and valence values to get his overall mood and use it for RECOMMENDATION.

● Real-Time Processing with the Speed Layer:
○ Captures user interactions in real-time, allowing quick adaptation to a

user’s current mood, and incorporates immediate data into the
collaborative filtering model.

Data Storage and Indexing

● MongoDB:
○ Stores unstructured and semi-structured data, including lyrics and user

interaction logs, providing flexibility for fast updates
● Elasticsearch:

○ Indexes track data, user preferences, and mood categories for high-speed
retrieval, enabling rapid queries that enhance the responsiveness of
recommendations.

● Apache Spark:
○ Data

● Data Versioning:

https://www.researchgate.net/figure/Human-emotional-classification-model-a-by-Russell-1980-and-b-Thayer-1991-In-the_fig1_334084112


○ Data versioning tracks changes in song metadata, user profiles, and
collaborative filtering models. Each model iteration or data update is
logged to ensure reproducibility across different versions.

Analyses Results:

MACHINE LEARNING MODELS:

Collaborative Filtering [Hybrid Neural Collaborative Filtering]:

■ Processes user-song interactions (e.g., skips, repeats) by
generating key-value pairs where the key is the user ID and the
value contains interaction metrics for each song.

■ Aggregates interaction metrics per user, building clusters of users
with similar listening patterns. This facilitates collaborative filtering
by identifying songs that users with similar behaviors enjoyed.

■ NCF Approach: Neural Collaborative Filtering further enhances
recommendation accuracy by leveraging these grouped user
preferences.

■ Used Hybrid Application for the conditions to include more
personalized recommendations to users like language, age,
gender,

■ Output: A list of top recommended songs per user cluster, ready
for real-time mood-based refinement.

https://pdf.sciencedirectassets.com/272648/1-s2.0-S1569190X21X00068/1-s2.0-S1569190X21000836/main.pdf?X-Amz-Security-Token=IQoJb3JpZ2luX2VjEHsaCXVzLWVhc3QtMSJHMEUCIQDREgQJ8%2F0j0IvRXAuhlkcXheeem74nW5UsuFV4SB%2F8vwIgcd8Wu5V0rrcBXmvPLbpff1Yc%2ByNwwewcaUO94CXQdVYqsgUIFBAFGgwwNTkwMDM1NDY4NjUiDG7JtDdnz0hws7dVcyqPBXv3DtUWREvQgK42tLhQXMbj7g6xucnEqGxeqlI1ryObhYJt%2FbzzAVoO%2FYophU6LFNiRyMq%2BTkj1o29GOR8D8AmO1GLljTKIhKB%2FMPtn4lXwHnLskNlvIjpGiB5hK9lf%2Fy83f%2BKDdQN8XblYCti%2BK8GyVGbUFQ0QgZMVcIZMCScmnnQWNg%2FmqjhOXA7GFh7l55Ye%2BP%2BzdPia2tgy3e%2F4bA%2FzH6GXt3ZLX7xzyjImsgj9wcFCTmW2oMdLDtJnmsTv3UTOtdFwfl4CyYnZGlAB7eGNf3ZrKYwoZwYNYOKkP3RFe072vIo8bW33m2p7x%2Fu%2BRvISftnXsfkMKiHYGPNtB1WQ8tV3IO3oPslMk%2FCrqBEQf5CNyJGj5SATNu9xhnlnDCwv2ooGD2WtF7Q%2FjMdvaegUUpIlX7eSLf8Ks56fIXopvvd7O0790zBQoFvEqEgjMaNL%2B8ZcclEinq494fz4XhbcdKR2uifv%2F%2FeFoG9Kj9oYkKIeBwwkE0gAJZ%2F3glU%2BgA693H9Lkn%2BkJOGv095Ctq308ErVqvHtGrx69VdZBh%2FIm9R4bgMKZHVNwoNORyIKegOdhhz0TYTwf96XHoQKYceX2IOjbQY57ATLBn0D0kT9UuFN2ViSHYKGbY37EIYS6hJpNA58hA5QIn4g%2FAOuDF2zHR0LxwTytLaa%2FR2xBXT5VhM8Pq9yuHrk2ac3ydxLUj9TsOWUsnrXnC5Kd%2B1GygkYh57IMk%2Be2Tgv4YKcI26olj4HMFm2%2BCMEXHJct6ZKcHQoFEd5ZX6zTRAyDqfzNtHrCo6HEaMupED56%2BHxQRKvJhTQ0jARn2QHEsb%2FsJG3i40K%2FZWCZPR3rjwaFudu%2BaQcu4z%2FgBhbesrnX4JfGFUw8sbcuQY6sQHr6GEStSIJh2AN3HLvO4JuvP%2FeaZP%2BpFKXyawLz%2Bf1kToT25MNkJGwkQYapLCv2S%2BG04UBVoII4soZpCs1vzDy8VFXTWbaGsM7slM4N17%2FNpBivfplVz%2BcqWnb0SaY6xdhMlBphnha0zLXf%2Bw0%2Bc1J7aZR86SR1GQ1Rk56MNhUWxJqEiDqwYD3sgbwHc75ArpqmgbSAGmPYHQ8yHBKcBTGQs6im7pozsYhV9KT%2BWmXYSw%3D&X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Date=20241115T112011Z&X-Amz-SignedHeaders=host&X-Amz-Expires=300&X-Amz-Credential=ASIAQ3PHCVTYRTUETMNS%2F20241115%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Signature=4817d28ef0b65ef2580dc3c065d1ca535d2d662433d4e9e5c9b148dfcca10b87&hash=ecb1c683eb7d82c424f15d0e0f79c9ac3d3f05ab36c38b1eac5bf77304a1fadb&host=68042c943591013ac2b2430a89b270f6af2c76d8dfd086a07176afe7c76c2c61&pii=S1569190X21000836&tid=spdf-c5191ffd-5d40-4b8a-a5dc-658c4dfa375b&sid=f0a287fd67230946d6997bc-75ce5496dcbegxrqb&type=client&tsoh=d3d3LnNjaWVuY2VkaXJlY3QuY29t&ua=0f0e5e0154070b5c015a&rr=8e2ed9b9eede80b5&cc=in


Age Gender Language Genre Ratings

Bias in Data:
● Sampling Bias:

○ This occurs when certain groups of users or songs are
underrepresented or overrepresented in your data. For instance, if
your dataset contains more data from users in a specific
geographic location, the recommendations may not generalize well
to other locations.

● Implicit Bias:
○ Implicit bias in recommendation systems comes from relying on

implicit feedback, like user clicks or play counts, rather than explicit
ratings. Implicit data may reflect more passive preferences rather
than active decisions, leading to misinterpretation of users' true
preferences.

Recommendation Engine:

● Recommendation Process:
○ Processes user-item interactions by pairing each user with their

listening history and behavior.
○ Aggregates users with similar listening habits to refine collaborative

filtering scores. The Reduce function outputs song clusters tailored
to user preferences based on similar listener patterns.

○ Final Recommendation Generation:
■ Mood analysis results are combined with collaborative

filtering scores, mood classifications, and real-time user
interactions. These components enable the system to
provide a mood-aligned set of next 5 songs.

● Views and Materialized Views:
○ Views: Aggregated views of user interaction data (e.g., searches,

skipping) provide insights into listening patterns.
○ Materialized Views: Frequently queried data, such as mood-based

song clusters, is cached to optimize the responsiveness of the
recommendation engine.



Fine Tuning:

Fine-tuning refers to the process of adjusting the parameters of a machine
learning model after its initial training to improve its performance on
specific tasks or datasets. In the context of your recommendation system,
fine-tuning typically involves:

● Incorporating New Data:
○ As new user interactions and song data are added, the model

can be fine-tuned by retraining or incrementally updating the
model with this fresh data. This helps the model adapt to
evolving user preferences and trends.

● Evaluation Metrics:
○ During fine-tuning, you would evaluate the model’s

performance using metrics like precision, recall, or Mean
Average Precision (MAP) to see how well the
recommendations are aligning with user expectations.

● Model Adjustments:
○ If using neural networks (like NCF), you might adjust the

architecture by adding layers, changing the activation function,
or introducing dropout to prevent overfitting.



○ Additionally, using domain-specific features (like user mood or
emotions) during fine-tuning could enhance recommendations.

● Feedback Loop:
○ Fine-tuning can also be based on user feedback. For

example, if users rate songs or interact more with certain
types of content, this feedback can be used to refine the
recommendation model and focus on these preferences.

Serving Layer:

● Pipeline Integration with Batch and Serving Layers:
○ The batch layer periodically updates collaborative filtering models

and sentiment analysis scores. These updates flow into the
recommendation pipeline, incorporating new user data and
interactions.

○ The serving layer delivers real-time, mood-based recommendations
and adapts to changes in user behavior as they interact with the
system.

● Real-Time Recommendations with the Speed Layer:
○ The speed layer captures instant interactions, updating sentiment

and mood states dynamically to refine recommendations that reflect
the user’s current listening preferences.



Application of Docker:

● Containerization of Services:
○ Each pipeline component is deployed as a Docker container. For

example, data ingestion, processing, and the recommendation
engine each run in isolated containers.

● Microservice Management:
○ Docker enables independent scaling and management of each

service. We can deploy the recommendation engine as a separate
service, allowing faster updates to model parameters without
affecting data ingestion

Application of Elasticsearch:



● MongoDB Atlas Search Vs Elasticsearch [Blog]:
○ Atlas Search is a Elasticsearch but is built on top of MongoDB by

embedding Apache Lucene Search Index.
○ Atlas Search is directly integrated into MongoDB, which simplifies

managing and maintaining a single data source, reducing the need for
separate synchronization processes.

○ Elasticsearch introduces costs related to managing and scaling additional
servers and handling potential data transfer between systems.

● Data Indexing for Fast Retrieval:
○ Atlas Search indexes song features (e.g., valence, energy) and

user preferences, supporting quick lookups and complex querying
for recommendations based on real-time user actions.

● Scalability:
○ Atlas Search’s clustering capabilities allow horizontal scaling,

ensuring the system can handle increasing data and traffic loads
without compromising performance.

Materialized Views:

● Materialized Views:
○ Frequently accessed data, such as mood-based song lists and user

recommendation history, are stored in materialized views. These
views reduce query times, enhancing the responsiveness of
recommendation updates.

● Justification for Completeness:
○ The use of views and materialized views allows for a

comprehensive representation of both user preferences and song
metadata, ensuring the recommendation engine considers both
historical data and real-time interactions.

Data Versioning System:

● Version Control:
○ Data versioning is crucial for tracking changes in model data and

recommendation logic. By using Git for model versioning and
implementing dataset versioning with tools like DVC (Data Version
Control), we ensure transparency and reproducibility.

Database Choice

https://www.mongodb.com/resources/compare/mongodb-atlas-search-vs-elastic-elasticsearch


● MongoDB:
○ Used for its flexibility in handling unstructured data, MongoDB

stores logs, user interactions, and other dynamic information that
supports real-time recommendations.

Data Visualization

Mood Energy vs. Mood Valence with Age Groups:

● This scatter plot visualizes the relationship between mood_energy and
mood_valence for users, with data points colored by age group across various
age ranges, including 13-18, 18-25, 26-35, 36-45, 46-60, and 60+ years. This
visualization helps identify how mood energy and valence vary within each age
category for users with lower energy levels.



Mood Energy vs. Mood Valence with Gender Groups:

● This scatter plot depicts the relationship between mood_energy and
mood_valence for users, with data points colored and styled according to
gender, showcasing any potential gender-specific trends in users' emotional
states.



Novel Idea Explored
Content-Based Filtering by Emotions:

● Traditional content-based filtering relies on song attributes like genre, tempo, or artist.
Adding emotional context as a feature for songs, such as mood (happy, sad, energetic,
etc.), can help refine recommendations.

● You can extract audio features (like energy and valence) to represent the emotional
character of a song.

● By considering the user's current emotional state (derived music history), you can filter
songs that align with the user’s emotional preference at that moment.

How NCF and Emotional Content Filtering Work Together:

● NCF learns patterns from the user-song interactions, while content filtering by
emotions offers more granular control over the emotional tone of the recommendations.

● By adding emotion as an additional input feature, you can enrich the user and item
embeddings, guiding the NCF model to not only recommend popular or commonly liked
songs but also to recommend songs that match the user’s emotional context.

● For example, if a user is feeling sad, the model might suggest slower, melancholic
songs, even if those songs are not highly rated but match the user’s emotional state.

Benefits of Combining NCF and Emotional Content Filtering:

● Personalization: The model can offer more personalized recommendations, not only
based on user preferences but also taking into account their emotional state, leading to
a better user experience.

● Context-Aware Recommendations: By integrating emotions, the recommendations
become context-aware, meaning they adapt to the user’s current mood or life situation.

● Novelty and Diversity: This approach helps introduce users to new songs they might
not have rated highly but which resonate with their emotions, improving the diversity of
recommendations.



Comparison with Existing Technologies:

1. Apache Spark vs. MapReduce

Apache Spark:

● Advantages:
○ Speed and Performance: Spark is significantly faster than MapReduce,

primarily due to its ability to process data in memory, reducing disk I/O
operations. This makes Spark highly suited for large-scale data processing tasks
like training recommendation models on massive datasets (e.g., music listening
history).

○ Ease of Use: Spark provides higher-level APIs (in Python, Scala, Java, etc.)
compared to MapReduce, making it easier to write and maintain distributed data
processing code.

○ Real-Time Processing: Unlike MapReduce, which is batch-based, Spark
supports both batch and real-time stream processing (e.g., real-time
recommendations based on user activity).

○ Advanced Analytics: Spark integrates well with machine learning libraries like
MLlib, enabling complex data processing and machine learning pipelines for
music recommendations.

Why Spark is Better:

● Recommendation Systems: Music recommendation systems often need to process
large datasets in real-time and perform complex transformations, which Spark is
optimized for.

● Scalability: Spark's ability to scale across many nodes with ease is important when you
have millions of users and tracks, like in a music recommendation system.

2. MongoDB Atlas vs. SQL Databases

MongoDB Atlas:

● Advantages:
○ Schema-less & Flexible Data Model: MongoDB’s document-based storage

allows for a flexible, schema-less design. This is ideal when dealing with diverse
data types, such as user activity logs, songs, and metadata, which may not fit
well into a rigid SQL schema.



○ Horizontal Scalability: MongoDB provides easy horizontal scaling by sharding,
which is crucial for handling large volumes of data, like millions of users and
songs, in a scalable way.

○ Aggregation Framework: MongoDB’s aggregation pipeline is powerful for
performing complex queries and transformations that are necessary for your
recommendation algorithms (e.g., filtering songs based on user preferences,
demographics).

○ JSON-like Documents: Since MongoDB stores data in a JSON-like format
(BSON), it's easier to represent nested data, such as songs with multiple
attributes (e.g., genre, artist, mood).

Why MongoDB Atlas is Better:

● Dynamic Nature of Music Data: Unlike SQL, MongoDB provides the flexibility to store
and evolve complex data schemas, especially with the rapidly changing nature of your
data (new songs, user activity, and ratings).

● Ease of Integration with Elasticsearch: MongoDB Atlas can seamlessly integrate with
MongoDB Atlas Search, making it easier to search and analyze large music catalogs
for recommendation purposes.

When to Prefer SQL Databases:

● SQL databases are typically preferred when your data is highly structured and relational,
such as transactional data (e.g., banking systems). However, for music
recommendations where data diversity is high, MongoDB excels.

3. MongoDB Atlas Search vs. Elasticsearch

MongoDB Atlas Search (powered by Elasticsearch):

● Advantages:
○ Integrated with MongoDB: MongoDB Atlas Search uses Elasticsearch under

the hood, but it provides native integration with MongoDB, making it easier to set
up and manage. You don’t need to maintain a separate Elasticsearch cluster.

○ Simplified Management: MongoDB Atlas provides a fully managed platform, so
you don’t need to handle deployment, scaling, or updates for your search
infrastructure.

○ Optimized for MongoDB Data: MongoDB Atlas Search is designed to work
seamlessly with MongoDB collections, which means you can easily index and
search across your music data (e.g., user activity, songs, metadata).

Why MongoDB Atlas Search is Better:



● Easier to Set Up and Manage:With MongoDB Atlas Search, you get the power of
Elasticsearch without the overhead of managing separate services, making it ideal for a
scalable recommendation system that requires real-time search.

● Efficiency: MongoDB Atlas Search has been optimized for performance, indexing data
in real-time and offering low-latency searches for your application.

When to Prefer Elasticsearch:

● If your data source is not MongoDB, then Elasticsearch is a standalone option for
full-text search and analytics across a variety of data sources.

4. PyTorch vs. Other Deep Learning Frameworks (e.g., TensorFlow, Keras)

PyTorch:

● Advantages:
○ Dynamic Computation Graphs: PyTorch uses dynamic computation graphs,

which are easier to debug and more flexible for building complex,
research-oriented models. This makes it ideal for experimentation in developing
custom recommendation algorithms.

○ Better Debugging: Due to its "eager execution" model, PyTorch allows you to
inspect and debug your model step-by-step, which is crucial when implementing
and fine-tuning complex algorithms.

○ Active Community & Research Focus: PyTorch is widely used in the research
community, and many state-of-the-art models (including for recommendation
systems) are implemented in PyTorch.

○ Support for GPU Acceleration: PyTorch provides seamless integration with
CUDA for fast training on GPUs, allowing you to train large neural networks on
large datasets like music interaction history.

Why PyTorch is Better:

● Customizability: PyTorch allows for more flexibility when building complex models like
Neural Collaborative Filtering (NCF), which is crucial for your recommendation
system.

● Rich Ecosystem: PyTorch has a comprehensive ecosystem that can assist in building
advanced models for content-based filtering and collaborative filtering.

When to Prefer TensorFlow or Keras:

● TensorFlow is highly optimized for production deployment and offers a robust set of tools
for model deployment, like TensorFlow Lite, which might be better if you need to deploy
your model to mobile devices or edge computing environments.



6. Go vs. JavaScript for Backend Development

Go (Golang):

● Advantages:
○ Performance: Go is known for its fast performance and minimal memory

footprint, which is ideal for building high-performance backend services for
recommendation systems.

○ Concurrency: Go provides built-in concurrency support via goroutines, which
makes it easy to handle multiple concurrent tasks (e.g., serving multiple user
recommendations at the same time).

○ Scalability: Go is well-suited for building scalable, distributed systems like
recommendation engines.

○ Simple Syntax and Efficiency: Go’s syntax is simple and its compilation speed
is fast, which improves developer productivity.

Why Go is Better than JavaScript (Node.js):

● Performance: Go is typically faster than JavaScript (Node.js) in terms of raw
performance, making it better suited for high-performance backend applications like a
recommendation engine.

● Concurrency: Go’s native concurrency model is more efficient than JavaScript’s
asynchronous event-loop, making Go a better choice for handling large-scale parallel
requests (e.g., serving millions of user requests).

When to Prefer JavaScript (Node.js):

● If you need to build a web server quickly with a large ecosystem of packages and a
focus on handling requests, Node.js with JavaScript might be more suitable. It’s also a
good option if you’re working in a full-stack JavaScript environment.

7. Hybrid Collaborative Filtering vs. Traditional Collaborative Filtering

Hybrid Collaborative Filtering:

● Advantages:
○ Combines Multiple Approaches: Hybrid collaborative filtering combines

collaborative filtering (based on user-item interactions) and content-based
filtering (based on song attributes like mood or genre). This approach addresses
the limitations of pure collaborative filtering (e.g., cold start problem and sparsity).

○ Improved Personalization: By leveraging both user behavior and song content,
the hybrid model offers a richer, more personalized set of recommendations.

Why Hybrid Collaborative Filtering is Better:



● Cold Start Problem: Hybrid models can better handle the cold start problem (new users
or items) by using content-based filtering to recommend items even when there isn’t
enough user interaction data.

● Diversity: Hybrid systems can offer a more diverse range of recommendations by
incorporating both user preferences and content features.


