

GSOC 2025 PROPOSAL

PersonalAIs

Generative AI Agent for Personalized Music

Recommendations

1. Basic Details

Name : Debanjan Rakshit

Email : Rakshit.debanjan1@gmail.com

University: Maulana Azad National Institute of Technology Bhopal

Course: Electronics and Communication Engineering

Time zone: GMT +5:30 (Indian Standard Time IST)

Links : Github

mailto:Rakshit.debanjan1@gmail.com
https://github.com/unknownsideofme/PLANTID

2. Contents

1. Basic Details .. 1

2. Contents .. 2

3. About Me ... 3

4. Past Experiences and Projects ... 3

5. Certifications: ... 4

6. Availability .. 4

7. Why GFOSS ? ... 4

8. Primary Objective ... 5

9. Primary Features and Goal .. 5

10. Additional Features .. 7

11. Major Tech Stack to be used: ... 8

12. Understanding the Endpoints in Spotify API 8

13. Implementation:.. 9

14. Scalability and Feasibility: .. 18

15. Expectation from GSOC and GFOSS: 19

16. Timeline/Project Plan: .. 19

3. About Me

I am currently a sophomore at Maulana Azad National Institute of Technology Bhopal

pursuing Electronics and Communications Engineering (2023-27). My keen interests lies in

tinkering with programming languages, late night debugging and taking up challenging

projects that pushes my boundaries and broadens my area of knowledge.

I have a solid foundation in the core concepts of Machine Learning Algorithms, Artificial

Intelligence, Generative AI, Data Structures, Algorithm Design and Analysis.

I am well versed in languages like C/C++, Python, JavaScript and frameworks like Pytorch,

Tensorflow, ScikitLearn, Langchain, FastAPI, RestAPIs, ReactJS, HTML, CSS and deployment

services like MS Azure, Amazon AWS.

I am a self-taught developer and an enthusiastic individual. I have participated in quite a few

hackathons and major achievements have been listed below.

4. Past Experiences and Projects:

1. Winner at Smart India Hackathon 2024 :

 Made an end to end fully deployed web service for the Ministry of Information

and Broadcasting, Government of India and deployed using Amazon EC2.

 It was named SLIFTEX (Similarity and Linguistic Filtering for Title Examination).

 It could detect similarities across multiple local languages of India.

Objective:

The objective of the project was to develop an online platform (service) for the

ministry so that they are able to filter out titles that are semantically, phonetically

and lexically similar to the existing titles of newspaper, journals etc.

2. Finalists at Smart Innovate Hackathon 2025 :

 Made a smart AI Chat application named PLANTID (Plant Identification and Disease

Diagnosis)

 Made an interactive chat application that could detect crops and plant disease using

the images uploaded by user and from the symptoms provided by them

 It could understand multilingual symptoms input and also provided accurate and

most probable disease prediction using the Geodata and the location of the user.

https://github.com/unknownsideofme/SLIFTEX
https://github.com/unknownsideofme/PLANTID

 Deployed using Microsoft Azure.

3. Summer Internship Project at Engineer Core :

 Made a simple Random Forest Classifier model that could classify emotions of

people using social media based on various parameters.

4. Crop Price Predictor :

 Made a Crop Price Prediction model for the Ministry of Foods, Government of

India using time series analysis algorithms like ARIMA and also explored LSTM

model for providing better results.

 Got selected for Smart India Hackathon 2024

5. Certifications:

 FreeCodeCamp Data Analysis with Python

 FreeCodeCamp Machine Learning with Python

 FreeCodeCamp JavaScript Algorithms and Data Structures

 Machine Learning from Effervescence IIIT Allahabad

6. Availability

After carefully reviewing the GSOC timeline, I concluded that I would be able to easily

dedicate 40-50 hrs a week towards the project building. Due to college end semester exams

from 8th May to 20th May I may not be able to attend to the project but after that I would be

able to contribute to the project with full dedication.

7. Why GFOSS ?

https://drive.google.com/file/d/1phvjs3QEBP47JzVl57zGrqTwJ7jbU03V/view?usp=sharing
https://www.freecodecamp.org/certification/Debanjan_Rakshit/data-analysis-with-python-v7
https://www.freecodecamp.org/certification/Debanjan_Rakshit/machine-learning-with-python-v7
https://www.freecodecamp.org/certification/Debanjan_Rakshit/javascript-algorithms-and-data-structures-v8
https://github.com/unknownsideofme/Horticultural_Price_Predictor

The project PersonalAI : Generative AI Agent for Personalised Music Recommendation aligns

with my area of interest and also aligns with my past experiences of various projects that I

have made. My previous experiences and my knowledge in the field of Generative AI, LLMs

makes me take up this project for GSOC 2025. This project focuses on the real-life

application of Generative AI and Large Language Models (LLMs) that adds meaning to the

technology by enhancing usability, accessibility, and efficiency. The goal is to leverage AI-

driven solutions to simplify complex tasks, improve user interactions, and create practical,

real-world applications that contribute to digital empowerment and societal impact.

By integrating state-of-the-art AI models, this project aims to demonstrate how Generative

AI can go beyond theoretical advancements and be effectively applied in various small and

big applications of daily use.

8. Primary Objective

The main goal of this project is to create an AI-based music recommendation agent using

Generative AI and Large Language Models (LLMs). The smart system will evaluate a variety

of parameters like genres, mood, listening history, and contextual preferences to provide

highly customized music recommendations. With the power of existing LLMs, the agent will

not only recommend songs but also learn from user behaviour and enhance its

recommendations over time. The aim is to create an intuitive and interactive music

discovery experience, where users can just browse songs that align with their moods,

activities, or music preferences.

9. Primary Features and Goal

 User Login:

Users will have to login so that using SPOTIFY API we are able to fetch the user

activities like:

1. User’s Playlist

2. User’s Top Tracks and Artist

3. Recently Played Tracks

4. Saved Music Information

5. Followed Artists

This will help us to generate better recommendations using user activities .

For example: The user wants to listen to some energetic songs and the top listened

artist is Metallica then we can recommend some good Metallica songs.

 User selects mood and genres :

A feature to let the user select the mood and genre according to which they want

recommendations. But solely this wouldn’t be used to generate the

recommendations rather this would be combined with the user history data to make

better recommendations.

For example: The user selects mood as romantic and if he has recently played track

as some metal song then we can recommend some romantic song played by a metal

band as it will best fit his taste.

 Explore Playlist Options :

An explore playlist options where the LLM will create playlists as suggestions for the

user so that they are able to get more personalised results rather than simply music

as recommendations. It would further reduce the hassle to add songs that the AI

would generate as a suggestion to some playlist.

 The AI may take suggestions from already existing public playlist to get better results.

 For example: The LLM may generate a list of 10 songs by itself. The user may select or

 deselect few of the songs and ask the model to generate more songs that will help us

 create a customised playlist for the user.

 Mood Recognition from User Activity or Input:

If the user shares input of example songs and what they want to listen that will allow

the LLM to understand better and provide better recommendations.

For Example : Make a Playlist similar to Blinding Lights by Weekend that will

automatically understand the mood of the user.

 Open Sourced LLM models :

Using Open Sourced LLM models either locally using Ollama or using ChatGroq’s free

API Service.

Probable use of LLM Models involves meta llama, deepseek’s r1 model etc.

 Emotion Classification :

Emotional classification can be done either by using embeddings trained on

emotional databases or by letting the LLM itself decide the genres as they have been

already pretrained on large datasets, whichever provides the better outcomes and

results.

For example: MusicGen is transformer model available on Hugging Face.

10. Additional Features

 Dynamic Evolution of Playlist:

Based on the suer activities we can continuously collect information about the user

activities and that could help us provide much better options.

Refining playlist can also be implemented based on suggestions provided by the LLM.

 Voice Based Command Integrations:

We can also work on voice-based command integrations so that it can make the

agent more user interactive.

 User feedback-based improvement system:

After a user have been given some suggestions, the user can like or dislike, select or

deselect the suggested songs that will let the LLM know what songs to recommend

further to the user.

These are the basic features that I find that the Agent must have so that it can be user

interactive, engaging and serves the purpose of the user. I have also listed some additional

features that can be worked on after the primary objectives have been achieved. Moreover

the website for our agent should be easy to use, not much complicated and must grasp the

attention of the user so that the user can retain on our website.

11. Major Tech Stack to be used:

 Frontend: HTML, CSS, ReactJS, JavaScript

 Backend: NodeJS, ExpressJS, MongoDB (if required for storing user database)

 API Server: FastAPI or RESTAPI

 Generative AI: LangChain (for integrating LLMs), ChatGroq (for free LLM API service)

 or Ollama (for running open-source LLM locally), Hugging Face Model for

 transformers (if required like MusicGen)

 Deployment Service: MS Azure

 User Music History: Spotify API

12. Understanding the Endpoints in Spotify API

Sr
No.

Endpoints Method Parameters Uses

1 accounts.spotify.com/authorize GET client_id,
response_type,
redirect_uri,
scope, state

To get the user to
login into their
Spotify account on
our platform

2 accounts.spotify.com/api/token POST grant_type,
code,
redirect_uri,
client_id,
client_secret

Exchange the
authorization code
for an access
token.

3 /me GET Get user profile

4 /me/playlists

GET Get user
playlists

5 /me/top/artists GET Get top artists

6 /me/top/tracks

GET Get top tracks

7 /me/player/recently-played GET Get recently
played tracks

8 /v1/me/playlists

GET Get
current
user’s
playlists.

9 /v1/users/{user_id}/playlists

POST user_id Create
a new
playlist
for a
user.

10 /v1/playlists/{playlist_id}

GET playlist_id Get information
about a playlist

11 /v1/playlists/{playlist_id}/tracks

GET Playlist_id Get the tracks
inside a playlist

12 /v1/search?q={query}&type={type}

GET Query, type Search for a song,
artist, playlist

13 /v1/recommendations

GET Get song
recommendations
based on seed
artists, genres, or
tracks.

14 /v1/artists/{artist_id}/related-artists GET Artist_id Get similar artists
to a given artist.

15 /v1/me/following

GET Get the
artists
followed by
the user.

16 /v1/me/albums

GET Get saved albums

17 /v1/me/tracks

GET Get saved tracks

13. Implementation:

 User Authentication:

User needs to login into their spotify accounts so that we are able to fetch their

details.

We need to implement Spotify’s OAuth Authentication.

First of all we need to have the following saved in a .env file

After that the following authentication can be done using the login function as

follows:

We’ll need to create a callback endpoint so that the authentication can land at that

endpoint:

SPOTIFY_CLIENT_ID=your_client_id

SPOTIFY_CLIENT_SECRET=your_client_secret

SPOTIFY_REDIRECT_URI=http://localhost:8000/callback

SCOPES = "user-read-private user-read-email playlist-read-private user-

top-read user-read-recently-played"

@app.get("/login")

def login():

 """Redirect user to Spotify login page."""

 auth_params = {

 "client_id": SPOTIFY_CLIENT_ID,

 "response_type": "code",

 "redirect_uri": SPOTIFY_REDIRECT_URI,

 "scope": SCOPES,

 }

 auth_url = f"{AUTH_URL}?{'&'.join([f'{k}={v}' for k, v in
auth_params.items()])}"

 return RedirectResponse(auth_url)

@app.get("/callback")

def callback(code: str):

 """Handle Spotify callback and exchange authorization code for access

token."""

 auth_payload = {

 "grant_type": "authorization_code",

 "code": code,

 "redirect_uri": SPOTIFY_REDIRECT_URI,

 "client_id": SPOTIFY_CLIENT_ID,

 "client_secret": SPOTIFY_CLIENT_SECRET,

 User Data Retrieval:

Using Spotify’s Api we can now get various data of the users. Few example usages

have been shown below

1. To get the playlist of the user

}

 response = requests.post(TOKEN_URL, data=auth_payload)

 if response.status_code != 200:

 raise HTTPException(status_code=400, detail="Error fetching

token")

 token_info = response.json()

 access_token = token_info["access_token"]

 refresh_token = token_info["refresh_token"]

 # Store token (Use a database in production)

 tokens["access_token"] = access_token

 tokens["refresh_token"] = refresh_token

 return {"message": "Authentication successful!", "access_token":

access_token}

def playlists():

response = requests.get(f"{API_BASE_URL}me/playlists", headers =

get_headers())

 return response.json()

2. To get the top tracks of the user

3. To get the top artists of the user

Furthermore we can obtain more user details that we need to complete the objectives.

 Generating Suggestion from the LLMS:

Now we can send the user details to the LLM so that it can generate the suggestion using the

mood details and the preferences of the user

We can do so by making use of LangChain. The selected moods and preference of the user

can be woven into a ChatPrompt by using LangChain’s ChatPromptTemplate and then can be

sent to the LLM that will generate suggestions automatically.

Example of such Chat Prompt is shown below:

def top_tracks():

response = requests.get(f"{API_BASE_URL}me/top/tracks", headers =

get_headers())

 return response.json()

def top_artists():

response = requests.get(f"{API_BASE_URL}me/top/artists", headers =

get_headers())

 return response.json()

Dummy user data from Spotify API

user_data = {

 "top_tracks": ["Song1", "Song2", "Song3"],

 "recent_tracks": ["Recent1", "Recent2", "Recent3"],

 "saved_tracks": ["Saved1", "Saved2"],

 "followed_artists": ["Artist1", "Artist2"],

The above code stores the user data that we shall collect from the API and the json schema

of the output data. Below is the code that shall invoke the LLM to parse the data and give

the desired output

"mood": "Happy",

 "genre": "Pop",

 "required": "playlists" # Options: playlists, artists, tracks

}

Define JSON structure for recommendations

json_schema = """

{

 "recommended_playlists": [

 {

 "name": "string",

 "description": "string",

 "tracks": ["string", "string"]

 }

],

 "recommended_tracks": ["string"],

 "recommended_artists": ["string"]

}

"""

Define prompt template using LangChain

prompt = ChatPromptTemplate.from_template("""

You are an AI music recommender. Based on the user's listening history

and preferences:

- Top Tracks: {top_tracks}

- Recently Played: {recent_tracks}

- Saved Tracks: {saved_tracks}

- Followed Artists: {followed_artists}

- Mood: {mood} JSON response matching this schema:

By using the ChatPromptTemplate feature we are able to provide the user input data, their

mood, behaviour data and other features that the LLM can easily use to understand user

mood and then produce a response.

- Genre: {genre}

- Required Recommendation Type: {required}

Generate a structured JSON response matching this schema:

{json_schema}

""")

Initialize GPT-4 LLM

llm = ChatOpenAI(model="gpt-4", temperature=0.7)

Format input

input_data = {

 **user_data,

 "json_schema": json_schema

}

Invoke LLM using the latest method

response = llm.invoke(prompt.format(**input_data))

Convert response to JSON

try:

 recommendations = json.loads(response.content)

 print(json.dumps(recommendations, indent=2))

except json.JSONDecodeError:

 print("Invalid JSON response from LLM:", response.content)

 Explore playlist feature:

The above ChatPromptTemplate can be used to provide a list of songs that we can fetch

from Spotify and then create and return as a playlist.

First we need to get Track ID of the recommended tracks

Then we need to create a playlist from the user account.

Get Spotify track IDs

def get_spotify_track_ids(track_names, access_token):

 """Fetch track IDs by searching songs on Spotify."""

 headers = {"Authorization": f"Bearer {access_token}"}

 track_ids = []

 for track in track_names:

 search_url =

f"https://api.spotify.com/v1/search?q={track}&type=track&limit=1"

 response = requests.get(search_url, headers=headers)

 if response.status_code == 200:

 data = response.json()

 if data["tracks"]["items"]:

 track_ids.append(data["tracks"]["items"][0]["id"])

 return track_ids

Create Playlist

def create_spotify_playlist(user_id, playlist_name, access_token):

 """Create a playlist in the user's Spotify account."""

 url = f"https://api.spotify.com/v1/users/{user_id}/playlists"

 headers = {"Authorization": f"Bearer {access_token}", "Content-

Type": "application/json"}

 Then we add the tracks to the playlist from the user account

 Emotional Classification

If the user provides some music as a input in some cases the LLM may not be able to

predict the emotion or mood accurately. In those cases we can use some MER Models

(Music Emotion Recognition) to accurately predict the emotion and provide better

results.

One such transformer available on Hugging Face is facebook/wav2vec2-large-xlsr-53

 payload = {"name": playlist_name, "description": "Generated by AI",

"public": False}

 response = requests.post(url, headers=headers, json=payload)

 if response.status_code == 201:

 return response.json()["id"]

#Add Songs to Playlist

def add_tracks_to_playlist(playlist_id, track_ids, access_token):

 """Add tracks to a created playlist."""

 url = f"https://api.spotify.com/v1/playlists/{playlist_id}/tracks"

 headers = {"Authorization": f"Bearer {access_token}", "Content-

Type": "application/json"}

 track_uris = [f"spotify:track:{track_id}" for track_id in

track_ids]

 payload = {"uris": track_uris}

 response = requests.post(url, headers=headers, json=payload)

 return response.status_code == 201

MODEL_NAME = "superb/wav2vec2-base-superb-emo"

processor = Wav2Vec2Processor.from_pretrained(MODEL_NAME)

model = Wav2Vec2ForSequenceClassification.from_pretrained(MODEL_NAME)

After getting the output emotion or genre result from the MER Model we can provide

the inference of the MER Model to the LLM Model so that it can provide more refined

result.

The above implementation section highlights how I plan to implement the various parts

of the project bringing the entirety of the project to its final and complete form. These

layout the plan and the path of how the project will be developed step by step. Each

snippet represents a crucial component, ensuring seamless integration of features such

as user authentication, playlist generation, and personalized recommendations.

Function to preprocess audio

def preprocess_audio(audio_path):

 waveform, sample_rate = librosa.load(audio_path, sr=16000)

 input_values = processor(waveform, return_tensors="pt",

sampling_rate=16000).input_values

 return input_values

Predict emotion

def detect_emotion(audio_path):

 inputs = preprocess_audio(audio_path)

 with torch.no_grad():

 logits = model(inputs).logits

 predicted_class = torch.argmax(logits, dim=-1).item()

 emotions = ["neutral", "happy", "sad", "angry", "fearful",

"disgusted", "surprised"]

 return emotions[predicted_class]

Example usage

song_path = "your_song.mp3" # Provide song path

emotion = detect_emotion(song_path)

print(f"Detected Emotion: {emotion}")

14. Scalability and Feasibility:

 Modular & Microservices Architecture:

Action: Break the application into independent services.

Implementation:

 Use Docker + Kubernetes to containerize and manage services.

 Implement RESTful APIs with FastAPI, or GraphQL for optimized queries.

 Optimization for Scaling:

Action: Implement caching, indexing, and partitioning to handle large-scale data.

Implementation:

 Use Redis or Memcached for caching frequently accessed data.
 Implement sharding and replication in MongoDB or MySQL for scalability.

 Load Balancing & Auto Scaling:

Action: Distribute user traffic across multiple servers.

Implementation:

 Use NGINX or AWS Load Balancer for distributing traffic.

 Implement auto-scaling with Kubernetes or AWS Auto Scaling.

 Asynchronous Processing & Message Queues:

Action: Move heavy computations to background tasks.

Implementation:

 Use Redis or Kafka for handling async tasks.

 Offload AI-based recommendations or data-heavy tasks to background workers.

 API Rate Limiting & Caching:

Action: Reduce server load by caching and limiting excessive requests.

Implementation:

 Implement Redis caching to store recent API responses.

 Use FastAPI’s rate limiter (slowapi package) to prevent API abuse.

15. Expectation from GSOC and GFOSS:

Through Google Summer of Code (GSoC) and GFOSS, I aim to gain hands-on experience

in open-source development, collaborate with experienced mentors, and contribute to a

real-world AI-driven project.

From GSoC, I anticipate structured mentorship, exposure to large-scale project

management, and the chance to work on production-level software. This will help me

understand the best practices of collaborative coding, version control, and scalable AI

implementations. expect to deepen my understanding of open-source AI applications

and contribute to a project that merges my passion for music and technology. I look

forward to leveraging this opportunity to grow as a developer and contribute to a project

that enhances music discovery and personalization for users worldwide.

16. Timeline/Project Plan:

GSoC is round about 12 week duration starting from 9th May and the initial 2-3 weeks is

provided for Community Bonding.

I plan to dedicate 60% of the time towards building the backend structure and

developing the backend and 30% time towards developing the frontend, UI/UX of the

software and remaining 10% of the time testing and fixing bugs.

Below is the timeline/project plan that I shall try to strictly follow so that the project is

completed well within time and match the expectations of the mentor.

LEGEND Importance and time devoted and priority (highest -> lowest)

Phase Start Date End Date Task Priority

Community
Bonding

9th May 23rd May

 24th May 25th May Gathering and
Understanding
Documentation

Phase 1 26th May 23rd June Development of the
Backend Server,
Integrating the AI and
the transformer

Phase 2 24th June 28th June Testing and fixing bugs
of the backend server
and ensuring proper
functionality

Phase 3 29th June 1st July UI/UX Designing and
Layout Designing

 1st July 25th July Frontend Development

 26th July 30th July Testing and debugging
Frontend

Phase 4 31st July 7th August Frontend and Backend
Integration

 8th August 10th August Final testing and
debugging

 11th August 16th August Documentation and
final PR

I can assure you that if I get selected to work with GFOSS this summer, I will definitely

dedicate the best of me to make this project successful and will love to continue working

with GFOSS and their projects even after the summer.

Looking forward to working with you.

Thanks And Regards

Debanjan Rakshit

	1. Basic Details
	2. Contents
	3. About Me
	5. Certifications:
	6. Availability
	7. Why GFOSS ?
	8. Primary Objective
	9. Primary Features and Goal
	10. Additional Features
	11. Major Tech Stack to be used:
	12. Understanding the Endpoints in Spotify API
	13. Implementation:
	14. Scalability and Feasibility:
	15. Expectation from GSOC and GFOSS:
	16. Timeline/Project Plan:

