Research Note
29 October 2002

Strategic Planning, SPA-16-7993
N. Drakos

Risks in Open-Source User Innovation Networks

Establishing an open-source user innovation network as an
extension of custom software development can carry
significant new risks. We offer specific advice on how to
minimize these risks.

Core Topic
Application Development: Managing
Application Development

Key Issue

What organizational structures are
applicable for the development,
maintenance and support of applications?

Strategic Planning Assumption

By 2004, fewer than 5 percent of Global
2000 organizations, mainly leading-edge
organizations with a commitment to internal
application development, will have used a
"build and open source" approach as an
additional option in their application
development strategy (0.6 probability).

An open-source user innovation network — where user
organizations create, distribute, maintain and support open-
source software products — can help to "future-proof' custom
software investments by tapping into additional external
resources for ongoing maintenance, enhancements and support.
These benefits and others are discussed in more detall
elsewhere, in the context of the openadaptor project at Dresdner
Kleinwort Wasserstein (see "Opportunities in Open-Source User
Innovation Networks," SPA-18-2358 and www.openadaptor.org).
However, the rarity of the open-source approach reflects the
significant risks that it carries. Here, we look at the risks and
recommend best practices for avoiding or minimizing them.

Initial Costs

Even giving something away can cost money. The first step in
preparing a user innovation network is to make the software
available. There are several issues here, in preparing the
software for distribution, and in distributing it and supporting
developer community services. The software preparation will
include:

Removing any company-specific information or intellectual
property

Removing dependencies to other commercial products

Breaking down the code into independent modules that can
be worked on by different teams in parallel

Creating installation = mechanisms and developer
documentation (including coding standards)

Preparing downloadable source and binary distributions

Gartner

Entire contents © 2002 Gartner, Inc. All rights reserved. Reproduction of this publication in any form without prior written permission is
forbidden. The information contained herein has been obtained from sources believed to be reliable. Gartner disclaims all warranties as to the
accuracy, completeness or adequacy of such information. Gartner shall have no liability for errors, omissions or inadequacies in the information
contained herein or for interpretations thereof. The reader assumes sole responsibility for the selection of these materials to achieve its intended
results. The opinions expressed herein are subject to change without notice.

Gartner Research
Copyright 2002

Preparing the code in this way will make it easy for potential
users and developers to become productive as quickly and easily
as possible. However, it may not be possible to go through these
steps because of embedded code relating to an organization's
core business (for example, the risk assessment rules embedded
in the software developed by an insurance company).

More likely, there may be dependencies to third-party,
commercial software. At least in the short term, such
dependencies will limit the appeal of any code to be released as
open-source software to potential users and developers.
Enterprises must understand exactly what is being released, to
prevent the accidental release of intellectual property belonging
to third parties. The inability to carry out all the above steps
would be a strong early signal to abandon this strategy because
of the high likelihood that the project will fail to attract enough
developers to make open-source development viable.

Having invested in preparing the code, enterprises must also
invest in the community support infrastructure. Getting the
attention of users and developers is only the first step. The
challenge is to keep them, and to foster productive collaboration
among them. Developers that have participated in other open-
source projects will have clear expectations about the
communication, code management, issue tracking and other
collaborative development facilities (see "Open-Source Software
Development Lessons," T-15-6434). It would be naive to expect
any interest from serious developers without offering the
expected collaborative development infrastructure.

Ongoing Costs

Clearly, there will be ongoing costs associated with the
maintenance of the infrastructure that serves the user and
developer community. However, this is not likely to be the
biggest problem. A more dangerous situation is one where there
is a healthy interest in using the open-source product but not in
maintaining, developing or supporting it. The danger is that the
internal application development organization may, increasingly,
devote resources to supporting external users.

Worse, those external users may even be setting priorities about
future development, which are very different from internal
requirements and priorities. Using internal resources for
development and support of external users is unavoidable during
the early "seeding" phase. However, if this initial investment is
not balanced by contributions from external developers in the
longer term — say, beyond a six-to-12-month period — the
project will have failed. In this case, action should be taken to

SPA-16-7993
29 October 2002 2

Gartner Research
Copyright 2002

limit the enterprise's exposure or to revitalize external developer
interest.

Licensing Minefield

There is already a bewildering array of open-source licenses.
Although most adhere to the open-source definition (see
www.opensource.org/licenses), there are important differences
between them. The main trade-off is between the level of control
that the original developer wishes to maintain and how this
control reduces the appeal of the product to users and
developers (see "Questions and Answers on Open-Source
Licensing," QA-17-8438).

A lot of decisions on control are about whether to allow the
creation of proprietary versions, the conditions under which
modifications can be redistributed and the status of contributed
code (for example, whether the original developers retain any
special privileges in being able to use contributed code in other
proprietary products).

The implications of the different options should be considered
very carefully and sound legal advice should be taken. However,
these licensing issues are most problematic for software vendors
trying to balance their commercial interests against the benefits
of open-source development. The licensing choices are much
more straightforward in user organizations that are opening up
their internally developed software mainly to ensure viability and
reduce costs through external contributions.

Another problematic aspect of open-source licenses is that their
provisions have not been legally tested. For example, it may still
be difficult to use an open-source license to pursue a third party
that has misappropriated the code. In one court case (MySQL vs.
Nusphere) in March 2002, the validity of one of the open-source
licenses — the General Public License — was upheld. However,
this may be contested and there are few other legal precedents
on open-source software.

Finally, the issue of copyright ownership for contributed code
should also be given serious consideration. In the case of the
openadaptor project code, contributors are required to assign
copyright ownership to a third party before their code can be
accepted for inclusion in the official distribution. Legal advice
should be sought when deciding on the most-appropriate course
of action.

SPA-16-7993
29 October 2002 3

Gartner Research
Copyright 2002

No Guarantee for Success

Success in this context is where an internal application
development project becomes the nucleus of an open-source,
self-sustaining, user innovation network of external users,
developers and services providers. This ecosystem ensures the
long-term viability of the product and distributes development,
maintenance and support costs among stakeholders. However,
this is a best-case scenario that many see as wishful thinking.

There is another risk here — there may be enthusiasm from
developers, followed by an initial positive reaction from business
managers because of the promise of lower support costs. This
enthusiasm may quickly turn to disappointment if any expected
benefits are not demonstrated, while the costs will be very
visible. Because it may take a long time for a project to reach
maturity, it is important to monitor the excess resource
contributions, over and above what the organization would have
invested in an internal application development project, against
the benefit from external contributions.

It is very important to be clear about when the enterprise expects
the initial return on investment to be recouped. To attract
developers and service providers, the project chosen must:

» Be widely applicable to maximize its appeal
» Be independent from proprietary code

» Be broken down into smaller modules that make it easy to
deploy and develop it in parallel

e Have undergone initial preparation (tidying the code,
documenting and automating the installation)

« Have a collaborative infrastructure set up to foster
community relations

* Be licensed under commerce-friendly flexible terms

Because of the above risks and despite the potential benefits, by
2004, fewer than 5 percent of Global 2000 organizations, mainly
leading-edge organizations with a commitment to internal
application development, will have used a "build and open
source" approach as an additional option in their application
development strategy (0.6 probability).

Bottom Line: Establishing an open-source user innovation
network carries initial and ongoing investment costs, as well as
additional licensing risks with no guarantees of success.
Organizations pursuing this strategy should focus on identifying
suitable projects, conduct a thorough initial risk and benefits
assessment, and then monitor for signals of success or failure on

SPA-16-7993
29 October 2002 4

an ongoing basis. A critical negative indicator will be any
increase in internal resource contributions, without corresponding
community contributions.

Gartner Research SPA-16-7993
Copyright 2002 29 October 2002 5

